The goal of Inverse Optimal Control (IOC) is to identify the underlying objective function based on observed optimal trajectories. It provides a powerful framework to model expert's behavior, and a data-driven way to design an objective function so that the induced optimal control is adapted to a contextual environment. In this paper, we design an IOC algorithm for linear-quadratic tracking problems with random time horizon, and prove the statistical consistency of the algorithm. More specifically, the proposed estimator is the solution to a convex optimization problem, which means that the estimator does not suffer from local minima. This enables the proven statistical consistency to actually be achieved in practice. The algorithm is also verified on simulated data as well as data from a real world experiment, both in the setting of identifying the objective function of human tracking locomotion. The statistical consistency is illustrated on the synthetic data set, and the experimental results on the real data shows that we can get a good prediction on human tracking locomotion based on estimating the objective function. It shows that the theory and the model have a good performance in real practice. Moreover, the identified model can be used as a control target in personalized rehabilitation robot controller design, since the identified objective function describes personal habit and preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.