Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Understanding the hypersonic inlet starting characteristics is the prerequisite for avoiding the abnormal unstart state. To make the work close to the actual situation, an experimental study was performed on a scramjet model at a simulated freestream Mach number of 6.0 with pressure and thrust measurements. The inlet working status is determined by the heat release of the injected ethylene with reciprocating variations. The results show that the critical equivalence ratio (ER) of the restart state is lower than that of the unstart state, which means that the combustion weakens the inlet restart capability and raises the unstart/restart hysteresis phenomena. Specifically, two novel unstart/restart hysteresis phenomena are found: one may come from the dual-solution characteristics of the shock-combustion interaction, and the other may come from the historical effect of reverse flow. Compared to the former type, the latter type requires greater downstream heat release and generates a larger hysteresis loop. In addition, the engine thrust characteristics of the whole unstart and restart processes are analyzed. The thrust increment in the shock-combustion interaction type exhibits nearly linearly. However, the thrust increment meets abrupt changes and strong oscillations in the reverse flow type, accompanied by the reverse flow's formation and disappearance, making the engine more difficult to restart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.