Spatiotemporal and motion features are two complementary and crucial information for video action recognition. Recent state-of-the-art methods adopt a 3D CNN stream to learn spatiotemporal features and another flow stream to learn motion features. In this work, we aim to efficiently encode these two features in a unified 2D framework. To this end, we first propose an STM block, which contains a Channel-wise SpatioTemporal Module (CSTM) to present the spatiotemporal features and a Channel-wise Motion Module (CMM) to efficiently encode motion features. We then replace original residual blocks in the ResNet architecture with STM blcoks to form a simple yet effective STM network by introducing very limited extra computation cost. Extensive experiments demonstrate that the proposed STM network outperforms the state-of-the-art methods on both temporal-related datasets (i.e., Something-Something v1 & v2 and Jester) and scene-related datasets (i.e., Kinetics-400, UCF-101, and HMDB-51) with the help of encoding spatiotemporal and motion features together.
Human attribute analysis is a challenging task in the field of computer vision. One of the significant difficulties is brought from largely imbalance-distributed data. Conventional techniques such as re-sampling and cost-sensitive learning require prior-knowledge to train the system. To address this problem, we propose a unified framework called Dynamic Curriculum Learning (DCL) to adaptively adjust the sampling strategy and loss weight in each batch, which results in better ability of generalization and discrimination. Inspired by curriculum learning, DCL consists of two-level curriculum schedulers: (1) sampling scheduler which manages the data distribution not only from imbalance to balance but also from easy to hard; (2) loss scheduler which controls the learning importance between classification and metric learning loss. With these two schedulers, we achieve state-of-the-art performance on the widely used face attribute dataset CelebA and pedestrian attribute dataset RAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.