Background
Acute myocardial infarction (AMI) is a serious cardiovascular disease, followed by a high readmission rate within 30-days of discharge. Accurate prediction of AMI readmission is a crucial way to identify the high-risk group and optimize the distribution of medical resources.
Methods
In this study, we propose a stacking-based model to predict the risk of 30-day unplanned all-cause hospital readmissions for AMI patients based on clinical data. Firstly,
we conducted an under-sampling method of neighborhood cleaning rule (NCR) to alleviate the class imbalance and then utilized a feature selection method of SelectFromModel (SFM) to select effective features. Secondly, we adopted a self-adaptive approach to select base classifiers from eight candidate models according to their performances in datasets. Finally, we constructed a three-layer stacking model in which layer 1 and layer 2 were base-layer and level 3 was meta-layer. The predictions of the base-layer were used to train the meta-layer in order to make the final forecast.
Results
The results show that the proposed model exhibits the highest AUC (0.720), which is higher than that of decision tree (0.681), support vector machine (0.707), random forest (0.701), extra trees (0.709), adaBoost (0.702), bootstrap aggregating (0.704), gradient boosting decision tree (0.710) and extreme gradient enhancement (0.713).
Conclusion
It is evident that our model could effectively predict the risk of 30-day all cause hospital readmissions for AMI patients and provide decision support for the administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.