With the rapid development of integrated circuit technology, the heat flux of electronic chips has been sharply improved. Therefore, heat dissipation becomes the key technology for the safety and reliability of the electronic equipment. In addition, the electronic chips are distributed discretely and used periodically in most applications. Based these problems, the characteristics of the heat transfer performance of flow boiling in parallel channels with discrete heat source distribution are investigated by a VOF model. Meanwhile, the two-phase flow instability in parallel channels with discrete heat source distribution is analyzed based on a one-dimensional homogeneous model. The results indicate that the two-phase flow pattern in discrete heat source distribution is more complicated than that in continuous heat source distribution. It is necessary to optimize the relative position of the discrete heat sources, which will affect the heat transfer performance. In addition, compared with the continuous heat source, the flow stability of discrete heat sources is better with higher and lower inlet subcooling. With a constant sum of heating power, the greater the heating power near the outlet, the better the flow stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.