MYB transcription factors have been demonstrated to play key regulatory roles in plant growth, development and abiotic stress response. However, knowledge concerning the involvement of rice MYB genes in salinity and drought stress resistance are largely unknown. In the present study, we cloned and characterized the OsMYB6 gene, which was induced by drought and salinity stress. Subcellular localization of OsMYB6-YFP fusion protein in protoplast cells indicated that OsMYB6 was localized in the nucleus. Overexpression of OsMYB6 in rice did not suggest a negative effect on the growth and development of transgenic plants, but OsMYB6 -overexpressing plants showed increased tolerance to drought and salt stress compared with wild-type plants, as are evaluated by higher proline content, higher CAT and SOD activities, lower REL and MDA content in transgenic plants under drought and salt stress conditions. In addition, the expression of abiotic stress-responsive genes were significantly higher in OsMYB6 transgenic plants than that in wild-type plants under drought and salt stress conditions. These results indicate that OsMYB6 gene functions as a stress-responsive transcription factor which plays a positive regulatory role in response to drought and salt stress resistance, and may be used as a candidate gene for molecular breeding of salt-tolerant and drought-tolerant crop varieties.
A physical phenomenon has been found: in a structure of nanometal film with dielectric-medium loading, the surface polaritons excited by a uniformly moving electron bunch can be transformed into Cherenkov radiation with intensity enhancement in the medium. Based on this mechanism, the surface polariton Cherenkov light radiation source is presented and explored in the Letter. The results show that surface polariton Cherenkov light radiation source can generate radiation, from visible light to the ultraviolet frequency regime and the radiation power density can reach or even exceed 10(8) W/cm(2) depending on the beam energy and current density. It is a tunable and miniature light radiation source promising to be integrated on a chip and built into a light radiation source array.
In underwater optical wireless communication (UOWC), a channel is characterized by abundant scattering/ absorption effects and optical turbulence. Most previous studies on UOWC have been limited to scattering/ absorption effects. However, experiments in the literature indicate that underwater optical turbulence (UOT) can cause severe degradation of UOWC performance. In this paper, we characterize an UOWC channel with both scattering/absorption and UOT taken into consideration, and a spatial diversity receiver scheme, say a singleinput-multiple-output (SIMO) scheme, based on a light-emitting-diode (LED) source and multiple detectors is proposed to mitigate deep fading. The Monte Carlo based statistical simulation method is introduced to evaluate the bit-error-rate performance of the system. It is shown that spatial diversity can effectively reduce channel fading and remarkably extend communication range. © 2015 Chinese Laser Press OCIS codes: (010.4455) Oceanic propagation; (060.0060) Fiber optics and optical communications. http://dx
Purpose:Myocardial ischemia/reperfusion (Ml/R) injury is a leading cause of damage in cardiac tissues, with high rates of mortality and disability. Biochanin A (BCA) is a main constituent of Trifolium pratense L. This study was intended to explore the effect of BCA on Ml/R injury and explore the potential mechanism.Methods: In vivo MI/R injury was established by transient coronary ligation in Sprague-Dawley rats. Triphenyltetrazolium chloride staining (TTC) was used to measure myocardial infarct size. ELISA assay was employed to evaluate the levels of myocardial enzyme and inflammatory cytokines. Western blot assay was conducted to detect related protein levels in myocardial tissues.Results:BCA significantly ameliorated myocardial infarction area, reduced the release of myocardial enzyme levels including aspartate transaminase (AST), creatine kinase (CK-MB) and lactic dehydrogenase (LDH). It also decreased the production of inflammatory cytokines (IL-1β, IL-18, IL-6 and TNF-α) in serum of Ml/R rats. Further mechanism studies demonstrated that BCA inhibited inflammatory reaction through blocking TLR4/NF-kB/NLRP3 signaling pathway.Conclusion:The present study is the first evidence demonstrating that BCA attenuated Ml/R injury through suppressing TLR4/NF-kB/NLRP3 signaling pathway-mediated anti-inflammation pathway.
MDR1 is highly expressed in MDR A2780DX5 ovarian cancer cells, MDR SGC7901R gastric cancer cells and recurrent tumours. It pumps cytoplasmic agents out of cells, leading to decreased drug accumulation in cells and making cancer cells susceptible to multidrug resistance. Here, we identified that miR‐495 was predicted to target ABCB1, which encodes protein MDR1. To reduce the drug efflux and reverse MDR in cancer cells, we overexpressed a miR‐495 mimic in SGC7901R and A2780DX cells and in transplanted MDR ovarian tumours in vivo. The results indicated that the expression of MDR1 in the above cells or tumours was suppressed and that subsequently the drug accumulation in the MDR cells was decreased, cell death was increased, and tumour growth was inhibited after treatment with taxol‐doxorubicin, demonstrating increased drug sensitivity. This study suggests that pre‐treatment with miR‐495 before chemotherapy could improve the curative effect on MDR1‐based MDR cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.