Although it is well known that mating increases the risk of infection, we do not know how females mitigate the fitness costs of sexually transmitted infections (STIs). It has recently been shown that female fruitflies, Drosophila melanogaster, specifically upregulate two members of the Turandot family of immune and stress response genes, Turandot M and Turandot C (TotM and TotC), when they hear male courtship song. Here, we use the Gal4/UAS RNAi gene knockdown system to test whether the expression of these genes provides fitness benefits for females infected with the entomopathogenic fungus, Metarhizium robertsii under sexual transmission. As a control, we also examined the immunity conferred by Dorsal-related immunity factor (Dif), a central component of the Toll signalling pathway thought to provide immunity against fungal infections. We show that TotM, but not TotC or Dif, provides survival benefits to females following STIs, but not after direct topical infections. We also show that though the expression of TotM provides fecundity benefits for healthy females, it comes at a cost to their survival, which helps to explain why TotM is not constitutively expressed. Together, these results show that the anticipatory expression of TotM promotes specific immunity against fungal STIs and suggest that immune anticipation is more common than currently appreciated.
16The concept of evolvability is controversial. To some, it is simply a measure of the standing genetic 2 17 variation in a population and can be captured by the narrowsense heritability (h ). To others, 18 evolvability refers to the capacity to generate heritable phenotypic variation. Many scientists, 19 including Darwin, have argued that environmental variation can generate heritable phenotypic 20 variation. However, their theories have been difficult to test. Recent theory on the evolution of sex 21 and recombination provides a much simpler framework for evaluating evolvability. It shows that 22 modifiers of recombination can increase in prevalence whenever low fitness individuals produce 23 proportionately more recombinant offspring. Because recombination can generate heritable variation, 24 stressinduced recombination might be a plausible mechanism of evolvability if populations exhibit a 25 negative relationship between fitness and recombination. Here we use the fruit fly, Drosophila 26melanogaster, to test for this relationship. We exposed females to mating stress, heat shock or cold 27 shock and measured the temporary changes that occurred in reproductive output and the rate of 28 chromosomal recombination. We found that each stress treatment increased the rate of recombination 29 and that heat shock, but not mating stress or cold shock, generated a negative relationship between 30 reproductive output and recombination rate. The negative relationship was absent in the lowstress 31 controls, which suggests that fitness and recombination may only be associated under stressful 32 conditions. Taken together, these findings suggest that stressinduced recombination might be a 33 mechanism of evolvability. 34 35
Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low-level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress-induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade-offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress-induced trade-offs with immunity, not cost-free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen-induced life-history trade-offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.”
Summary Animals must tailor their life‐history strategies to suit the prevailing conditions and respond to hazards in the environment. Animals with lethal infections are faced with a difficult choice: to allocate more resources to reproduction and suffer higher mortality or to reduce reproduction with the expectation of enhanced immunity and late‐age reproduction. However, the strategies employed to mediate shifts in life‐history traits are largely unknown.Here, we investigate the temperature preference of the fruit fly, Drosophila melanogaster, during infection with the fungal pathogen, Metarhizium robertsii, and the consequence of temperature preference on life‐history traits.We have measured the temperature preference of fruit flies under different pathogen conditions. We conducted multiple fitness assays of the host and the pathogen under different thermal conditions. From these data, we estimated standard measures of fitness and used age‐specific methodologies to test for the fitness trade‐offs that are thought to underlie differences in life‐history strategy.We found that fungus‐infected fruit flies seek out cooler temperatures, which facilitates an adaptive shift in their life‐history strategy. The colder temperatures preferred by infected animals were detrimental to the pathogen because it increased resistance to infection. But, it did not provide net benefits that were specific to infected animals, as cooler temperatures increased lifetime reproductive success and survival whether or not the animals were infected. Instead, we find that cold‐seeking benefits infected animals by increasing their late‐age reproductive output, at a cost to their early‐age reproductive output. In contrast, naive control flies prefer warmer temperatures that optimize early‐age reproductive, at a cost to reproductive output at late ages.These findings show that infected animals exhibit fundamentally different reproductive strategies than their healthy counterparts. Temperature preference can facilitate shifts in strategy, but not without inevitable trade‐offs.
Cuticular hydrocarbons are key compounds used for insect chemical communication and their species-specificity makes them of great utility to chemotaxonomists. However, very little is known about their long-term stability in relation to their use as reliable taxonomic tools. We compared the cuticular hydrocarbon profiles of fresh extracts from four hornet (Vespa) species with extracts from specimens that were frozen for 1 year and of those stored in insect display boxes for 20 years. Cuticular hydrocarbon profiles were qualitatively very stable, maintaining their species-specific profiles even after 20 years. The long-term stability of cuticular hydrocarbons in hymenopterans opens up the possibility of using museum collections for chemotaxonomy studies and helping with the delineation of species in difficult groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.