Autophagy is a lysosome-dependent cellular degradation process. Organisms bearing deletions of the essential autophagy genes exhibit various pathological conditions, including cancer in mammals and shortened life span in C. elegans. The direct cause for these phenotypes is not clear. Here we used yeast as a model system to characterize the cellular consequence of ATG (autophagy-related) gene deletions. We found that the atg mutant strains, atg1D, atg6D, atg8D and atg12D, showed defects related to mitochondrial biology. These strains were unable to degrade mitochondria in stationary culture. In non-fermentable medium, which requires mitochondrial oxidative phosphorylation for survival, these atg strains showed a growth defect with an increased cell population at the G 1 phase of the cell cycle. The cells had lower oxygen consumption rates and reduced mitochondrial electron transport chain activities. Under these growth conditions, the atg strains had lower mitochondrial membrane potential. In addition, these mutants generated higher levels of reactive oxygen species (ROS) and they were prone to accumulate dysfunctional mitochondria. This study clearly indicates that an autophagy defect has a functional impact on various aspects of mitochondrial functions and suggests a critical role of autophagy in mitochondria maintenance.
Rational: LDCT screening can identify early-stage lung cancers yet introduces excessive false positives and it remains a great challenge to differentiate malignant tumors from benign solitary pulmonary nodules, which calls for better non-invasive diagnostic tools. Methods: We performed DNA methylation profiling by high throughput DNA bisulfite sequencing in tissue samples (nodule size < 3 cm in diameter) to learn methylation patterns that differentiate cancerous tumors from benign lesions. Then we filtered out methylation patterns exhibiting high background in circulating tumor DNA (ctDNA) and built an assay for plasma sample classification. Results: We first performed methylation profiling of 230 tissue samples to learn cancer-specific methylation patterns which achieved a sensitivity of 92.7% (88.3% - 97.1%) and a specificity of 92.8% (89.3% - 96.3%). These tissue-derived DNA methylation markers were further filtered using a training set of 66 plasma samples and 9 markers were selected to build a diagnostic prediction model. From an independent validation set of additional 66 plasma samples, this model obtained a sensitivity of 79.5% (63.5% - 90.7%) and a specificity of 85.2% (66.3% - 95.8%) for differentiating patients with malignant tumor (n = 39) from patients with benign lesions (n = 27). Additionally, when tested on gender and age matched asymptomatic normal individuals (n = 118), our model achieved a specificity of 93.2% (89.0% - 98.3%). Specifically, our assay is highly sensitive towards early‐stage lung cancer, with a sensitivity of 75.0% (55.0%-90.0%) in 20 stage Ia lung cancer patients and 85.7% (57.1%-100.0%) in 7 stage Ib lung cancer patients. Conclusions: We have developed a novel sensitive blood based non‐invasive diagnostic assay for detecting early stage lung cancer as well as differentiating lung cancers from benign pulmonary nodules.
Tartrate-resistant acid phosphatase 5b (TRACP 5b) has been used as a biomarker of bone resorption and cancer metastasis. TRACP 5b has also been suggested to be a reliable marker of osteoclast number. In this study, the correlation of TRACP 5b level and osteoclast-like cell number was investigated in RAW 264.7 cells treated with receptor-activated nuclear factor κB ligand (RANKL). RAW 264.7 cells were cultured with α-MEM containing RANKL (40 ng/ml) for 3, 5 and 7 days. Osteoclast formation and TRACP 5b levels were determined by TRACP staining, scanning electron microscopy and enzyme-linked immunosorbent assay. The RAW 264.7 cells that were not exposed to RANKL did not secrete TRACP 5b. RANKL induced the RAW 264.7 cells to differentiate into osteoclasts and to secrete TRACP 5b. The TRACP 5b level in the RAW 264.7 cells treated with RANKL was significantly correlated with the number and volume of osteoclasts (r=0.95 and r=0.92, respectively; P<0.0001). TRACP 5b is a good marker of RANKL-induced osteoclast formation in RAW 264.7 cells. TRACP 5b analysis may be used as an alternative to osteoclast counting in vitro.
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Tripartite motif-containing 29 (TRIM29) is a member of TRIM proteins family, which plays diverse physiological and pathological roles in humans. Recent studies found that TRIM29 expressed highly in CRC and promoted cell growth in vitro. However, its function in the metastasis of CRC has not been studied. In the present study, we confirmed the previous report that TRIM29 was upregulated in CRC tissues and high levels of TRIM29 expression were associated with poor overall survival of patients. Moreover, TRIM29 knockdown significantly reduced cancer cell proliferation via notably inducing cell cycle arrest and cell apoptosis. Silencing of TRIM29 significantly inhibited the migration and invasion ability of CRC cells. The protein levels of apoptosis‑, migration‑ and invasion‑related proteins were also changed after TRIM29 knockdown. Furthermore, phosphorylation levels of JAK2 and STAT3 were clearly reduced in TRIM29 knockdown cells, indicating a possible mechanism underlying its effects on colorectal carcinogenesis. Collectively, TRIM29 may exert oncogenic effects in CRC cells via regulating JAK2/STAT3 signaling.
Gastric cancer (GC) is a malignancy with poor prognosis. NDUFA4 is reported to correlate with the progression of GC. However, its underlying mechanism in GC is unknown. Our study was to reveal the pathogenic mechanism of NDUFA4 in GC. NDUFA4 expression was explored in single-cell and bulk RNA-seq data as well as GC tissue microarray. Mitochondrial respiration and glycolysis were estimated by oxygen consumption rate and extracellular acidification rate, respectively. The interaction between NDUFA4 and METTL3 was validated by RNA immunoprecipitation. Flow cytometry was used to estimate cell cycle, apoptosis and mitochondrial activities. NDUFA4 was highly expressed in GC and its high expression indicated a poor prognosis. The knockdown of NDUFA4 could reduce cell proliferation and inhibit tumor growth. Meanwhile, NDUFA4 could promote glycolytic and oxidative metabolism in GC cells, whereas the inhibition of glycolysis suppressed the proliferation and tumor growth of GC. Besides, NDUFA4 inhibited ROS level and promoted MMP level in GC cells, whereas the inhibition of mitochondrial fission could reverse NDUFA4-induced glycolytic and oxidative metabolism and tumor growth of GC. Additionally, METTL3 could increase the m6A level of NDUFA4 mRNA via the m6A reader IGF2BP1 to promote NDUFA4 expression in GC cells. Our study revealed that NDUFA4 was increased by m6A methylation and could promote GC development via enhancing cell glycolysis and mitochondrial fission. NDUFA4 was a potential target for GC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.