In recent years, with the rapid development of Internet of Things (IoT) technology, a large number of Internet of things devices such as network printers, webcams and routers have emerged in the cyberspace. However, the situation of network security is increasingly serious. Large-scale network attacks launched by terminal devices connected to the Internet occur frequently, causing a series of adverse effects such as information leakage and property loss to people. The establishment of a set of fingerprint generation system for Internet of things devices to accurately identify the device type is of great significance for the unified security control of the Internet of things. We proposed a RAFM which is a detection and identification system of IoT. RAFM consists two major module including auto detection and fingerprinting. RAFM collects messages sent by different Internet of things devices by means of passive listening. Based on the differences in the header fields of different devices, it USES a series of multi-class classification algorithms to identify device types. Simulation experiments show that RAFM can achieve an average prediction accuracy of 93.75%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.