Most of the present‐day down‐conversion white light‐emitting devices (WLEDs) utilize rare‐earth elements, which are expensive and facing the problem of shortage in supply. WLEDs based on the combination of orange and blue emitting copper nanoclusters are introduced, which are easy to produce and low in cost. Orange emitting Cu nanoclusters (NCs) are synthesized using glutathione as both the reduction agent and stabilizer, followed by solvent induced aggregation leading to the emission enhancement. Photoluminescence quantum yields (PL QY) of 24% and 43% in solution and solid state are achieved, respectively. Blue emitting Cu nanoclusters are synthesized by reduction of polyvinylpyrrolidone supported Cu(II) ions using ascorbic acid, followed by surface treatment with sodium citrate which improves both the emission intensity and stability of the clusters, resulting in the PL QY of 14% both in solution and solid state. All‐copper nanocluster based down‐conversion WLEDs are fabricated by integrating powdered orange and blue emitting Cu NC samples on a commercial GaN LED chip providing 370 nm excitation. They show favorable white light characteristics with Commission Internationale de l'Eclairage color coordinates, color rendering index, and correlated color temperature of (0.36, 0.31), 92, and 4163 K, respectively.
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.
To define the hormonal criteria via genotypic proof for 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency in the adrenals and gonads, we investigated the type II 3beta-HSD genotype in 55 patients with clinical and/or hormonal presentation suggesting compromised adrenal with or without gonadal 3beta-HSD activity. Fourteen patients (11 males and 3 females) had ambiguous genitalia with or without salt wasting and with or without premature pubarche. One female neonate had salt wasting only. Twenty-five children (4 males and 21 females) had premature pubarche only. Fifteen adolescent and adult females had hirsutism with or without menstrual disorder. The type II 3beta-HSD gene, including the promoter region up to -1053 base, all exons I, II, III, IV, and exon and intron boundaries, was sequenced in all subjects. Eight patients had a proven or predictably deleterious mutation in both alleles of the type II 3beta-HSD gene, and 47 patients had no apparent mutation in the gene. ACTH-stimulated (1 h post iv bolus of 250 microg Cortrosyn) serum 17-hydroxypregnenolone (Delta5-17P) levels and basal and ACTH-stimulated ratios of Delta5-17P to cortisol (F) in the genotypic proven patients were unequivocally higher than those of age-matched or pubic hair stage matched genotype-normal patients or control subjects (n = 7-30 for each group). All other baseline and ACTH-stimulated hormone parameters, including dehydroepiandrosterone (DHEA) levels, ratios of Delta5-17P to 17-OHP and DHEA to androstenedione in the genotype-proven patients, overlapped with the genotype-normal patients or control subjects. The hormonal findings in the genotype-proven patients suggest that the following hormonal criteria are compatible with 3beta-HSD deficiency congenital adrenal hyperplasia (numeric and graphic reference standards from infancy to adulthood are provided): ACTH-stimulated Delta5-17P levels in 1) neonatal infants with ambiguous genitalia at or greater than 378 nmol/liter equivalent to or greater than 5.3 SD above the control mean level [95 +/- 53 (SD) nmol/liter]; 2) Tanner I children with ambiguous genitalia at or greater than 165 nmol/liter equivalent to or greater than 35 SD above the control mean level [12 +/- 4.3 (SD) nmol/liter]; 3) children with premature pubarche at or greater than 294 nmol/liter equivalent to or greater than 54 SD above Tanner II pubic hair stage matched control mean level [17 +/- 5 (SD) nmol/liter]; and 4) adults with at or greater than 289 nmol/liter equivalent to or greater than 21 SD above the normal mean level [25 +/- 12 (SD) nmol/liter]. ACTH-stimulated ratio of Delta5-17P to F in 1) neonatal infants at or greater than 434 equivalent to or greater than 6.4 SD above the control mean ratio [88 +/- 54 (SD)]; 2) Tanner I children at or greater than 216 equivalent to or greater than 23 SD above the control mean ratio [12 +/- 9 (SD)]; 3) children with premature pubarche at or greater than 363 equivalent to or greater than 38 SD above the control mean ratio [20 +/- 9 (SD)]; and 4) adults at or greater than ...
Rats with kidney isografts have a limited capacity to concentrate urine and, at the same time, fail to increase rBSC1 and AQP2 transcripts. This suggests that there is a prolonged damage of renal tubules by ischemia or denervation of the donor kidney, both of which are inevitable in the transplantation procedure.
PPAR-γ agonist attenuates upper airway allergic inflammation in a PPAR-γ-dependent fashion, and the beneficial effects of pioglitazone in airway allergic inflammation may be mediated by induction of Tregs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.