The turning test of stainless steel was carried out by using the central composite surface design of response surface method (RSM) and Taguchi design method of central combination design. The influence of cutting parameters (cutting speed, feed rate, and cutting depth) on the surface roughness was analyzed. The surface roughness prediction model was established based on the second-order RSM. According to the test results, the regression coefficient was estimated by the least square method, and the regression equation was curve fitted. Meanwhile, the significance analysis was conducted to test the fitting degree and response surface design and analysis, in addition to establishing a response surface map and three-dimensional surface map. The life of the machining tool was analyzed based on the optimized parameters. The results show that the influence of feed rate on the surface roughness is very significant. Cutting depth is the second, and the influence of cutting speed is the least. Therefore, the cutting parameters are optimized and tool life is analyzed to realize the efficient and economical cutting of difficult-to-process materials under the premise of ensuring the processing quality.
Rolling bearings are the core components of the machine. In order to save costs and prevent accidents caused by bearing failures, the rolling bearing fault diagnosis technology has been widely used in the industrial field. At present, the proposed methods include wavelet transform, morphological filtering, empirical mode decomposition (EMD), and ensemble empirical mode decomposition (EEMD), which have obvious shortcomings. As it is difficult to extract the fault characteristic frequency caused by nonlinear and nonstationary features of the rolling bearing fault signal, this paper presents a fault feature extraction method of rolling bearing based on nonlinear mode decomposition (NMD) and wavelet threshold denoised method. First of all, the fault signal was preprocessed via wavelet threshold denoising. Then, the denoised signal was decomposed by using NMD. Next, the mode component envelope spectrum was made. Finally, the fault characteristic frequency of rolling bearing was extracted. The method was compared with EMD through the simulation experiment and rolling bearing fault experiment. Meanwhile, two indicators including signal-noise ratio (SNR) and root-mean-square error (RMSE) were also established to evaluate the fault diagnosis ability of this method, and the results show that this method can extract the fault characteristic frequency accurately.
We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains of four bearing failure forms, which addresses the issue of ambiguous fault identification caused by their nonlinearity and nonstationarity. The extracted feature vectors are then divided into training and test sets as SVM inputs for fault diagnosis. To optimize the SVM, we construct a hybrid kernel SVM using a polynomial kernel function and radial basis kernel function. BO is used to optimize the extreme values of the objective function and determine their weight coefficients. We create an objective function for the Gaussian regression process of BO using training and test data as inputs, respectively. The optimized parameters are used to rebuild the SVM, which is then trained for network classification prediction. We tested the proposed diagnostic model using the bearing dataset of the Case Western Reserve University. The verification results show that the fault diagnosis accuracy is improved from 85% to 100% compared with the direct input of vibration signal into the SVM, and the effect is significant. Compared with other diagnostic models, our Bayesian-optimized hybrid kernel SVM model has the highest accuracy. In laboratory verification, we took sixty sets of sample values for each of the four failure forms measured in the experiment, and the verification process was repeated. The experimental results showed that the accuracy of the Bayesian-optimized hybrid kernel SVM reached 100%, and the accuracy of five replicates reached 96.7%. These results demonstrate the feasibility and superiority of our proposed method for fault diagnosis in rolling bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.