Transposable elements (TEs) make up a large and rapidly evolving proportion of plant genomes. Among Class II DNA TEs, TIR elements are flanked by characteristic terminal inverted repeat sequences (TIRs). TIR TEs may play important roles in genome evolution, including generating allelic diversity, inducing structural variation, and regulating gene expression. However, TIR TE identification and annotation has been hampered by the lack of effective tools, resulting in erroneous TE annotations and a significant underestimation of the proportion of TIR elements in the maize genome. This problem has largely limited our understanding of the impact of TIR elements on plant genome structure and evolution. In this paper, we propose a new method of TIR element detection and annotation. This new pipeline combines the advantages of current homology-based annotation methods with powerful de novo machine-learning approaches, resulting in greatly increased efficiency and accuracy of TIR element annotation. The results show that the copy number and genome proportion of TIR elements in maize is much larger than that of current annotations. In addition, the distribution of some TIR superfamily elements is reduced in centromeric and pericentromeric positions, while others do not show a similar bias. Finally, the incorporation of machine-learning techniques has enabled the identification of large numbers of new DTA (hAT) family elements, which have all the hallmarks of bona fide TEs yet which lack high homology with currently known DTA elements. Together, these results provide new tools for TE research and new insight into the impact of TIR elements on maize genome diversity.
Transposable elements (TEs) are DNA sequences that can mobilize and proliferate throughout eukaryotic genomes. Previous studies have shown that in plant genomes, TEs can influence gene expression in various ways such as inserting in introns or exons to alter transcript structure and content, and providing novel promoters and regulatory elements to generate new regulatory patterns. Furthermore, TEs can also regulate gene expression at the epigenetic level by modifying chromatin structure, changing DNA methylation status and generating small RNAs. In this study, we demonstrated that Ac/fAc transposable elements are able to induce ectopic gene expression by duplicating and shuffling enhancer elements. Ac/fAc elements belong to the hAT family of Class II TEs. They can undergo standard transposition events, which involve the two termini of a single transposon, or alternative transposition events which involve the termini of two different, nearby elements. Our previous studies have shown that alternative transposition can generate various genome rearrangements such as deletions, duplications, inversions, translocations and Composite Insertions (CIs). We identified over 50 independent cases of CIs generated by Ac/fAc alternative transposition and analyzed 10 of them in detail. We show that these CIs induced ectopic expression of the maize pericarp color 2 (p2) gene, which encodes a Myb-related protein. All the CIs analyzed contain sequences including a transcriptional enhancer derived from the nearby p1 gene, suggesting that the CI-induced activation of p2 is effected by mobilization of the p1 enhancer. This is further supported by analysis of a mutant in which the CI is excised and p2 expression is lost. These results show that alternative transposition events are not only able to induce genome rearrangements, but also generate Composite Insertions that can control gene expression.
Transposable elements (TEs) are DNA sequences that can mobilize and proliferate throughout eukaryotic genomes. Previous studies have shown that in plant genomes, TEs can influence gene expression in various ways such as inserting in introns or exons to alter transcript structure and content, and providing novel promoters and regulatory elements to generate new regulatory patterns. Furthermore, TEs can also regulate gene expression at the epigenetic level by modifying chromatin structure, changing DNA methylation status and generating small RNAs. In this study, we demonstrated that Ac/fAc transposable elements are able to induce ectopic gene expression by duplicating and shuffling enhancer elements. Ac/fAc elements belong to the hAT family of Class II TEs. They can undergo standard transposition events, which involve the two termini of a single transposon, or alternative transposition events which involve the termini of two different, nearby elements. Our previous studies have shown that alternative transposition can generate various genome rearrangements such as deletions, duplications, inversions, translocations and Composite Insertions (CIs). We identified over 50 independent cases of CIs generated by Ac/fAc alternative transposition and analyzed 10 of them in detail. We show that these CIs induced ectopic expression of the maize pericarp color 2 (p2) gene, which encodes a Myb-related protein. All the CIs analyzed contain sequences including a transcriptional enhancer derived from the nearby p1 gene, suggesting that the CI-induced activation of p2 is effected by mobilization of the p1 enhancer. This is further supported by analysis of a mutant in which the CI is excised and p2 expression is lost. These results show that alternative transposition events are not only able to induce genome rearrangements, but also generate Composite Insertions that can control gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.