The super dual auroral radar network (SuperDARN) is an important tool in the remote sensing of ionospheric potential convection in middle and high latitudes, and also a major source of elevation data detection. A reliable elevation angle helps estimate the propagation paths of high-frequency radio signals between scattering spots and radars, which is crucial for determining high-frequency radar target geolocation. The SuperDARN radar uses interferometry to estimate the elevation of the returned signal. However, elevation data are still underutilized owing to the difficulties of phase difference calibration induced by the propagation time delay between two arrays. This paper statistically analyzes the distribution features of the group range-elevation angle and group range-virtual height before and after calibration using elevation data from the ground backscatter echoes of the Zhongshan SuperDARN radar, calculating the root mean square error (RMSE) of the virtual height; the results show that the RMSE after calibration is mostly reduced to within 54% of that before calibration. Furthermore, we validate the calibration factor based on the primary phase data. The data from 2013 to 2015 indicate that this technique can be efficiently used to estimate the daily calibration factor. Finally, we present the statistical distribution of the calibration factor, which provides technical support for the calibration of elevation data in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.