BackgroundEpidemiologic studies have shown inconsistent conclusions about the effect of ulinastain treatment for acute respiratory distress syndrome (ARDS). It is necessary to perform a meta-analysis of ulinastatin’s randomized controlled trials (RCTS) to evaluate its efficacy for treating ARDS.MethodsWe searched the published RCTs of ulinastatin treatment for ARDS from nine databases (the latest search on April 30th, 2017). Two authors independently screened citations and extracted data. The meta-analysis was performed using Rev. Man 5.3 software.ResultsA total of 33 RCTs involving 2344 patients satisfied the selection criteria and were included in meta-analysis. The meta-analysis showed that, compared to conventional therapy, ulinastatin has a significant benefit for ARDS patients by reducing mortality (RR = 0.51, 95% CI:0.43~0.61) and ventilator associated pneumonia rate (RR = 0.50, 95% CI: 0.36~0.69), and shortening duration of mechanical ventilation (SMD = -1.29, 95% CI: -1.76~-0.83), length of intensive care unit stay (SMD = -1.38, 95% CI: -1.95~-0.80), and hospital stay (SMD = -1.70, 95% CI:-2.63~−0.77). Meanwhile, ulinastatin significantly increased the patients’ oxygenation index (SMD = 2.04, 95% CI: 1.62~2.46) and decreased respiratory rate (SMD = -1.08, 95% CI: -1.29~-0.88) and serum inflammatory factors (tumor necrosis factor-α: SMD = -3.06, 95% CI:-4.34~-1.78; interleukin-1β: SMD = -3.49, 95% CI: -4.64~-2.34; interleukin-6: SMD = -2.39, 95% CI: -3.34~-1.45; interleukin-8: SMD = -2.43, 95% CI: -3.86~-1.00).ConclusionsUlinastatin seemly showed a beneficial effect for ARDS patients treatment and larger sample sized RCTs are needed to confirm our findings.
Lumiracoxib is a selective cyclooxygenase‐2 inhibitor, which has been reported to cause rare but severe liver injury. Considering that lumiracoxib has a carboxylic group in the molecule, glucuronidation to form acylglucuronide would be one of the possible mechanisms of lumiracoxib‐induced liver injury. The aim of this study was to identify the metabolites of lumiracoxib that were formed via acyl‐glucuronidation in human liver microsomes using glutathione (GSH) and N‐acetyl‐lysine (NAL) as trapping agents by liquid chromatography combined with high resolution mass spectrometry. The structures of the detected metabolites were identified by their accurate masses, fragment ions, and retention times. Under the current conditions, eight lumiracoxib associated metabolites were identified. With the presence of UDPGA, lumiracoxib was biotransformed into lumiracoxib‐1‐O‐acylglucuronide (M1) and 4′‐hydroxyl‐lumiracoxib‐1‐O‐acylglucuronide (M2), both of which were reactive and prone to react with GSH to form drug‐S‐acyl‐GSH adducts (M3 and M4) through transacylation. In addition to reaction with GSH, the formed 1‐O‐acylglucuronides were chemically unstable (T1/2 = 1.5 h in phosphate buffer) and rearranged to 2‐, 3‐, and/or 4‐isomers, which further underwent ring‐opening to form aldehyde derivatives and then reacted with NAL to yield Schiff base derivatives (M5–M8). The present study provides a clear bioactivation profile of lumiracoxib through acyl glucuronidation, which would be one of the mechanisms attributed to liver injury caused by lumiracoxib.
Crop lodging is a major destructive factor for agricultural production. Developing a cost-efficient and accurate method to assess crop lodging is crucial for informing crop management decisions and reducing lodging losses. Satellite remote sensing can provide continuous data on a large scale; however, its utility in detecting lodging crops is limited due to the complexity of lodging events and the unavailability of high spatial and temporal resolution data. Gaofen1 satellite was launched in 2013. The short revisit cycle and wide orbit coverage of the Gaofen1 satellite make it suitable for lodging identification. However, few studies have explored lodging detection using Gaofen1 data, and the operational application of existing approaches over large spatial extents seems to be unrealistic. In this paper, we discuss the identification method of lodged maize and explore the potential of using Gaofen1 data. An analysis of the spectral features after maize lodging revealed that reflectance increased significantly in all bands, compared to non-lodged maize. A spectral sum index was proposed to distinguish lodged and non-lodged maize. Two study areas were considered: Zhaodong City in Heilongjiang Province and Ningjiang District in Jilin Province. The results of the identified lodged maize from the Gaofen1 data were validated based on three methods: first, ground sample points exhibited the overall accuracies of 92.86% and 88.24% for Zhaodong City and Ningjiang District, respectively; second, the cross-comparison differences of 1.01% for Zhaodong City and 1.13% for Ningjiang District were obtained, compared to the results acquired from the finer-resolution Planet data; and third, the identified results from Gaofen1 data and those from farmer survey questionnaires were found to be consistent. The validation results indicate that the proposed index is promising, and the Gaofen1 data have the potential for rapid lodging monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.