In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Dou, S. (2013). Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Letters: a journal dedicated to nanoscience and nanotechnology, 13 (11), 5480-5484.Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage AbstractRecently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the highest theoretical capacity of 2596 mA h g-1, but the commercially available red phosphorus cannot react with Na reversibly. Here, we report that simply hand-grinding commercial microsized red phosphorus and carbon nanotubes (CNTs) can deliver a reversible capacity of 1675 mA h g-1 for sodium ion batteries (SIBs), with capacity retention of 76.6% over 10 cycles. Our results suggest that the simply mixed commercial red phosphorus and CNTs would be a promising anode candidate for SIBs with a high capacity and low cost.Keywords ion, sodium, reversible, exceptionally, composite, storage, nanotube, simply, carbon, phosphorus, red, commercial, mixed Disciplines Engineering | Physical Sciences and Mathematics Publication DetailsLi, W., Chou, S., Wang, J., Liu, H. & Dou, S. (2013). Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Letters: a journal dedicated to nanoscience and nanotechnology, 13 (11), 5480-5484. ABSTRACT: Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable
Hyperglycemia is a major independent risk factor for diabetic macrovascular disease. The consequences of exposure of endothelial cells to hyperglycemia are well established. However, little is known about how adipocytes respond to both acute as well as chronic exposure to physiological levels of hyperglycemia. Here, we analyze adipocytes exposed to hyperglycemia both in vitro as well as in vivo. Comparing cells differentiated at 4 mM to cells differentiated at 25 mM glucose (the standard differentiation protocol) reveals severe insulin resistance in cells exposed to 25 mM glucose. A global assessment of transcriptional changes shows an up-regulation of a number of mitochondrial proteins. Exposure to hyperglycemia is associated with a significant induction of reactive oxygen species (ROS), both in vitro as well as in vivo in adipocytes isolated from streptozotocin-treated hyperglycemic mice. Furthermore, hyperglycemia for a few hours in a clamped setting will trigger the induction of a pro-inflammatory response in adipose tissue from rats that can effectively be reduced by co-infusion of N-acetylcysteine (NAC). ROS levels in 3T3-L1 adipocytes can be reduced significantly with pharmacological agents that lower the mitochondrial membrane potential, or by overexpression of uncoupling protein 1 or superoxide dismutase. In parallel with ROS, interleukin-6 secretion from adipocytes is significantly reduced. On the other hand, treatments that lead to a hyperpolarization of the mitochondrial membrane, such as overexpression of the mitochondrial dicarboxylate carrier result in increased ROS formation and decreased insulin sensitivity, even under normoglycemic conditions. Combined, these results highlight the importance ROS production in adipocytes and the associated insulin resistance and inflammatory response.Many genetic and environmental factors can lead to the development of insulin resistance. Once a degree of insulin resistance is established, decreased glucose tolerance arises and occasional bouts of hyperglycemia ensue. Hyperglycemia can in turn cause a further deterioration of insulin sensitivity in a number of tissues, such as the vascular endothelium, muscle, and adipocytes (1).In the vascular endothelium, hyperglycemia has been shown to activate protein kinase C isoforms, give rise to increased levels of glucose-derived advanced glycation end products, and to cause an increased glucose flux through the aldose reductase pathway. Normalization of mitochondrial reactive oxygen species by a number of different approaches prevents these phenomena (2). In adipocytes, Tang and colleagues (3) have shown that a combination of hyperglycemia and hyperinsulinemia results in reduced insulin-stimulated glucose uptake that was in part because of reduced insulin receptor dephosphorylation.Gagnon and Sorisky (4) have previously assessed the effects of low and high glucose levels on 3T3-L1 adipocytes and reported effects on insulin-mediated IRS-1 1 phosphorylation and associated phosphatidylinositol kinase activity. Lu and coll...
Urchin‐like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium‐ion batteries (SIBs) with ether‐based electrolytes. The CoSe2 delivers excellent sodiation and desodiation properties when using 1 m NaCF3SO3 in diethyleneglycol dimethylether as an electrolyte and cycling between 0.5 and 3.0 V. A high discharge capacity of 0.410 Ah g−1 is obtained at 1 A g−1 after 1800 cycles, corresponding to a capacity retention of 98.6% calculated from the 30th cycle. Even at an ultrahigh rate of 50 A g−1, the capacity still maintains 0.097 Ah g−1. The reaction mechanism of the as‐prepared CoSe2 is also investigated. The results demonstrate that at discharged 1.56 V, insertion reaction occurs, while two conversion reactions take place at the second and third plateaus around 0.98 and 0.65 V. During the charge process, Co first reacts with Na2Se to form NaxCoSe2 and then turns back to CoSe2. In addition to Na/CoSe2 half cells, Na3V2(PO4)3/CoSe2 full cell with excessive amount of Na3V2(PO4)3 has been studied. The full cell exhibits a reversible capacity of 0.380 Ah g−1. This work definitely enriches the possibilities for anode materials for SIBs with high performance.
Iron-based Prussian blue analogs are promising low-cost and easily prepared cathode materials for sodium-ion batteries. Their materials quality and electrochemical performance are heavily reliant on the precipitation process. Here we report a controllable precipitation method to synthesize high-performance Prussian blue for sodium-ion storage. Characterization of the nucleation and evolution processes of the highly crystalline Prussian blue microcubes reveals a rhombohedral structure that exhibits high initial Coulombic efficiency, excellent rate performance, and cycling properties. The phase transitions in the as-obtained material are investigated by synchrotron in situ powder X-ray diffraction, which shows highly reversible structural transformations between rhombohedral, cubic, and tetragonal structures upon sodium-ion (de)intercalations. Moreover, the Prussian blue material from a large-scale synthesis process shows stable cycling performance in a pouch full cell over 1000 times. We believe that this work could pave the way for the real application of Prussian blue materials in sodium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.