Background and Aims: Acute liver failure (ALF) is associated with high mortality. Gasdermin D (GSDMD) is the executioner of pyroptosis and is involved in the pathophysiology of immune dysregulation This study investigated the role of the GSDMD inhibitor necrosulfonamide (NSA) in ALF. Methods: An ALF model was established by lipopolysaccharide/D-galactosamine challenge in C57BL/6J mice. Mice were divided into four groups: normal controls (control group), ALF group (ALF group), dimethyl sulfoxide group (DMSO group), and NSA intervention group (NSA group). Survival was monitored, liver damage was determined by hematoxylin and eosin staining, and serum alanine aminotransferase (ALT). Underlying mechanisms were explored by quantitative real-time PCR, western blotting, and enzyme-linked immunosorbent assays. Results: Pyroptosis was activated in ALF model mice. Mice treated with GSDMD inhibitor NSA developed less severe liver failure. NSA reduced the expression of GSDMD, NLRP3, cleaved caspase-1, cleaved caspase-11, and secretion of interleukin-1 beta in ALF mice model. Conclusions: Pyroptosis was activated in ALF. NSA alleviated ALF via the pyroptosis pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.