We have designed and fabricated a hybrid integrated laser source with full C-band wavelength tunability and high-power output. The external cavity laser is composed of a gain chip and a dual micro-ring narrowband filter integrated on the silicon nitride photonic chip to achieve a wavelength tuning range of 55 nm and a SMSR higher than 50 dB. Through the integration of the semiconductor optical amplifier in the miniaturized package, the laser exhibits an output power of 220 mW and linewidth narrower than 8 kHz over the full C-band. Such a high-power, narrow-linewidth laser diode with a compact and low-cost design could be applied whenever coherence and interferometric resolutions are needed, such as silicon optical coherent transceiver module for space laser communication, light detection and ranging (LiDAR).
In this study, we propose a novel multi-dimensional and large-sized optical phased array theory for space laser communication that addresses the theoretical limitations of the conventional optical phased array. We theoretically analyzed the principle of this phased array technology. The results of simulation and laboratory experiment clearly showed it can realize the large scanning angle and high optical gain required for communication. The novel optical phased array theory is of great significance to the revolution of miniaturization and networking in the field of space laser communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.