Endothelial lipase (EL) is a member of a subfamily of lipases that act on triglycerides and phospholipids in plasma lipoproteins, which also includes lipoprotein lipase and hepatic lipase. EL has a tropism for high density lipoprotein, and its level of phospholipase activity is similar to its level of triglyceride lipase activity. Inhibition or loss-of-function of EL in mice results in an increase in high density lipoprotein cholesterol, making it a potential therapeutic target. Although hepatic lipase and lipoprotein lipase have been shown to function as homodimers, the active form of EL is not known. In these studies, the size and conformation of the active form of EL were determined. Immunoprecipitation experiments suggested oligomerization. Ultracentrifugation experiments showed that the active form of EL had a molecular weight higher than the molecular weight of a simple monomer but less than a dimer. A construct encoding a covalent head-to-tail homodimer of EL (EL-EL) was expressed and had similar lipolytic activity to EL. The functional molecular weights determined by radiation inactivation were similar for EL and the covalent homodimer EL-EL. We previously showed that EL could be cleaved by proprotein convertases, such as PC5, resulting in loss of activity. In cells overexpressing PC5, the covalent homodimeric EL-EL appeared to be more stable, with reduced cleavage and conserved lipolytic activity. A comparative model obtained using other lipase structures suggests a structure for the head-to-tail EL homodimer that is consistent with the experimental findings. These data confirm the hypothesis that EL is active as a homodimer in head-to-tail conformation.Three members of the triglyceride lipase family, lipoprotein lipase (LPL), 3 hepatic lipase (HL), and endothelial lipase (EL), contribute to lipoprotein catabolism in the plasma compartment. They are all secreted proteins that bind to heparan sulfate proteoglycans on the luminal side of endothelial cells where they interact with their lipoprotein substrates. They have different specificities for lipoproteins, and all hydrolyze triglycerides and phosphatidylcholine at the sn-1 position, albeit with widely differing efficiencies (1). The preferred lipoprotein substrates for LPL are the triglyceride-rich lipoproteins, chylomicrons, and very low density lipoproteins; the triglyceride lipase activity of LPL is more than 100-fold greater than its phospholipase activity. The primary lipoprotein substrates for HL are chylomicron remnants, intermediate density lipoproteins, and large triglyceridase-enriched HDL; its triglyceride lipase activity is about 20-fold higher than its phospholipase activity. EL is much more active on HDL, and its phospholipase activity is quite similar to its triglyceride lipase activity. These three lipolytic enzymes share a number of structural features. By analogy to the crystal structure of pancreatic lipase (2), another member of the triglyceride lipase family, each has a clearly defined N-terminal and C-terminal structural domain, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.