Boron-doped polycrystalline silicon-germanium (SiGe) thin films are grown by low-pressure chemical vapor deposition (LPCVD) and their thermoelectric properties are characterized from 120 K to 300 K for the potential applications in integrated microscale cooling. The naturally formed grain boundaries are found to play a crucial role in determining both the charge and thermal transport properties of the films.Particularly, the grain boundaries create energy barriers for charge transport which lead to abnormal dependences of charge mobility on doping concentration and temperature. Meanwhile, the unique columnar grain structures result in remarkable thermal conductivity anisotropy with the in-plane thermal conductivities of SiGe films about 50% lower than the cross-plane values. By optimizing the growth conditions and doping level, a high figure of merit (ZT) of 0.2 for SiGe films is achieved at 300 K, which is about 100% higher than the previous record for p-type SiGe alloys, mainly due to the significant reduction in the in-plane thermal conductivity caused by nanograin boundaries. The low cost and excellent scalability of LPCVD render these high-performance SiGe films ideal candidates for thin-film thermoelectric applications.
In recent years, protein arginine methyltransferases (PRMTs) have emerged as new members of a gene expression regulator family in eukaryotes, and are associated with cancer pathogenesis and progression. Cancer immunotherapy has significantly improved cancer treatment in terms of overall survival and quality of life. Protein arginine methylation is an epigenetic modification function not only in transcription, RNA processing, and signal transduction cascades, but also in many cancer-immunity cycle processes. Arginine methylation is involved in the activation of anti-cancer immunity and the regulation of immunotherapy efficacy. In this review, we summarize the most up-to-date information on regulatory molecular mechanisms and different underlying arginine methylation signaling pathways in innate and adaptive immune responses during cancer. We also outline the potential of PRMT-inhibitors as effective combinatorial treatments with immunotherapy.
Structural characteristics are considered to be the dominant factors in determining the effective properties of granular media, particularly in the scope of transport phenomena. Towards improved heat management, thermal transport in granular media requires an improved fundamental understanding. In this study, the effects of packing structure on heat transfer in granular media are evaluated at macro-and grain-scales. At the grain-scale, a gas-solid coupling heat transfer model is adapted into a discrete-element-method to simulate this transport phenomenon. The numerical framework is validated by experimental data obtained using a plane source technique, and the Smoluschowski effect of the gas phase is found to be captured by this extension. By considering packings of spherical SiO2 grains with an interstitial helium phase, vibration induced ordering in granular media is studied, using the simulation methods developed here, to investigate how disorder-to-order transitions of packing structure enhance effective thermal conductivity. Grain-scale thermal transport is shown to be influenced by the local neighbourhood configuration of individual grains. The formation of an ordered packing structure enhances both global and local thermal transport. This study provides a structure approach to explain transport phenomena, which can be applied in properties modification for granular media. discrete element method. Highlights 1. A numerical framework combining finite element analysis and discrete element simulation is established to study heat conduction in granular media.2. Finite element analysis is used to correct the conventional analytical solution and an empirical correlation is provided to implement the correction.3. The modified heat transfer model is incorporated into discrete element simulation.4. The effects of structural transitions on effective thermal conductivity is evaluated by grainscale structure index, and meso-scale mechanisms of the effect are identified.
Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-disperse spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-toorder transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.