BackgroundAs a typical Chinese herbal medicine, rhizoma Cimicifugae (RC, 升麻 in Chinese) possesses various pharmacological effects involved in antioxidant activity. However, its antioxidant activity has not been reported so far. The aim of the present study was to systematically evaluate the antioxidant ability of RC in vitro, then discuss the mechanism.MethodsFirstly, five RC extracts (i.e. petroleum ether extract PERC, ethyl acetate extract EARC, absolute ethanol extract AERC, 95% ethanol extract 95ERC, and water extract WRC) were prepared and determined by various antioxidant methods, including anti-lipidperoxidation, protection against DNA damage, ·OH scavenging, ·O2- scavenging, DPPH· (1,1-diphenyl-2-picryl-hydrazl radical) scavenging, ABTS+· (2,2’-azino-bis (3-ethylbenzo- thiazoline-6-sulfonic acid radical ion) scavenging, Cu2+-chelating, and Fe3+ reducing assays. Subsequently, we measured the chemical contents of five RC extracts, including total phenolics, total saponins, total sugars, caffeic acid, ferulic acid and isoferulic acid. Finally, we quantitatively analyzed the correlations between antioxidant levels (1/IC50 values) and chemical contents.ResultsIn the study, the antioxidant levels and chemical contents (including total phenolics, total saponins, total sugars, caffeic acid, ferulic acid and isoferulic acid) of five RC extracts were determined by various methods. In all antioxidant assays, five RC extracts increased the antioxidant levels in a dose-dependent manner. However, their antioxidant levels (IC50 values) and chemical contents significantly differed from each other. Quantitative analysis of the correlation showed that total phenolic was of significant positive correlations (average R value was 0.56) with antioxidant levels; In contrast, total sugars and total saponins had no positive correlation with antioxidant (the average R values were −0.20 and −0.26, for total sugars and total saponins, respectively); Among total phenolics, three phenolic acids (caffeic acid, ferulic acid and isoferulic acid) also displayed positive correlations (the average R values were 0.51, 0.50, and 0.51, for caffeic acid, ferulic acid and isoferulic acid, respectively).ConclusionsAs an effective antioxidant, Rhizoma Cimicifugae can protect DNA and lipids against oxidative damage. Its antioxidant ability can be responsible for its various pharmacological effects and may be mainly attributed to the existence of total phenolics, among which caffeic acid, ferulic acid and isoferulic acid are regarded as main bioactive components. Rhizoma Cimicifugae exerts its antioxidant effect through metal-chelating, and radical-scavenging which is via donating hydrogen atom (H·) and donating electron (e).
Rhizoma Atractylodes macrocephala (AM) has been used in Traditional Chinese Medicine (TCM) for about 2,000 years. In the study, we firstly determined the antioxidant levels of five AM extracts by •OH-scavenging, •O2−-scavenging, Fe2+-chelating, Cu2+-chelating, DPPH·-scavenging, and ABTS+·-scavenging assays. After measurement of the chemical contents in five AM extracts, we quantitatively analyzed the correlations between antioxidant levels and chemical contents. It was observed that total phenolics and total flavonoids had significant positive correlations with antioxidant levels (R = 0.685 and 0.479, respectively). In contrast, total sugars and total saponins presented lower correlations with antioxidant levels (R = −0.272 and 0.244, respectively). It means that antioxidant activity of AM should be attributed to total phenolics (including phenolic acids and flavonoids), and not total sugars and total saponins. Further analysis indicated that phenolic acids exhibited higher R values with radical-scavenging assays (R = 0.32–1.00), while flavonoids showed higher R values with metal-chelating assays (R= 0.86 and 0.90). In conclusion, AM exerts its antioxidant effect through metal-chelating, and radical-scavenging which is via donating hydrogen atom and donating electron. Its metal-chelating may result from flavonoids, while its radical-scavenging can be attributed to phenolic acids, especially caffeic acid, ferulic acid, and protocatechuic acid.
In this work, a simple electrochemiluminescence (ECL) imaging method based on the cell shield of the ECL emission was developed for the morphological and quantitative analysis of living cells under external stimulation. ECL images of MCF-7 cells cultured on or captured at the glassy carbon electrode (GCE) surface in a solution of tris(2,2′-bipyridyl)ruthenium(II)–tri-n-propylamine were recorded. Important morphological characteristics of living cells, including cell shape, cell area, average cell boundary, and junction distance between two adjacent cells, were directly obtained using the developed negative ECL imaging method. The ECL images revealed gradual morphological changes in cells on the GCE surface. During the course of H2O2 stimulation of cells on the GCE surface, cells shrunk, rounded up, disengaged from surrounding cells, and finally detached from the electrode surface. During the course of electrical stimulation (0.8 V), the cells on the GCE surface exhibited aggregation as demonstrated by increases in the average cell boundary and decreases in the junction distance between two adjacent cells. Additionally, a quantitative method for the sensitive determination of MCF-7 cells with a limit of detection of 29 cells/mL was developed using the negative ECL imaging strategy. This work demonstrates that the proposed negative ECL imaging strategy is a promising approach to assess important morphological characteristics of living cells during the course of external stimulation and to obtain quantitative information on cell concentrations in solution.
Background Diospyros oleifera Cheng, of the family Ebenaceae, is an economically important tree. Phylogenetic analyses indicate that D. oleifera is closely related to Diospyros kaki Thunb. and could be used as a model plant for studies of D. kaki. Therefore, development of genomic resources of D. oleifera will facilitate auxiliary assembly of the hexaploid persimmon genome and elucidate the molecular mechanisms of important traits. Findings The D. oleifera genome was assembled with 443.6 Gb of raw reads using the Pacific Bioscience Sequel and Illumina HiSeq X Ten platforms. The final draft genome was ∼812.3 Mb and had a high level of continuity with N50 of 3.36 Mb. Fifteen scaffolds corresponding to the 15 chromosomes were assembled to a final size of 721.5 Mb using 332 scaffolds, accounting for 88.81% of the genome. Repeat sequences accounted for 54.8% of the genome. By de novo sequencing and analysis of homology with other plant species, 30,530 protein-coding genes with an average transcript size of 7,105.40 bp were annotated; of these, 28,580 protein-coding genes (93.61%) had conserved functional motifs or terms. In addition, 171 candidate genes involved in tannin synthesis and deastringency in persimmon were identified; of these chalcone synthase (CHS) genes were expanded in the D. oleifera genome compared with Diospyros lotus, Camellia sinensis, and Vitis vinifera. Moreover, 186 positively selected genes were identified, including chalcone isomerase (CHI) gene, a key enzyme in the flavonoid-anthocyanin pathway. Phylogenetic tree analysis indicated that the split of D. oleifera and D. lotus likely occurred 9.0 million years ago. In addition to the ancient γ event, a second whole-genome duplication event occurred in D. oleifera and D. lotus. Conclusions We generated a high-quality chromosome-level draft genome for D. oleifera, which will facilitate assembly of the hexaploid persimmon genome and further studies of major economic traits in the genus Diospyros.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.