Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.
BackgroundTrichomonas vaginalis (TV) is a protozoan parasite that causes trichomoniasis, a sexually transmitted disease, worldwide. In this study, we investigated the prevalence and genetic characterization of T. vaginalis and contrasted the most prevalent strains of T. vaginalis isolated from Xinxiang City, Henan Province, China.ResultsIn Xinxiang from September 2015 to September 2017, a total of 267 (1.64%, 95% confidence interval, CI: 1.45–1.85) clinical T. vaginalis-positive samples from vaginal secretions were observed by wet mount microscopy from 16,294 women with some clinical symptoms of trichomoniasis. We found that trichomoniasis frequently occurred in the 21- to 40-year-old age group and in winter. After the 267 clinical T. vaginalis positive samples were cultured, 68 isolates of T. vaginalis were harvested and identified as genotype E (58.82%), H (17.65%), mixed 1 (17.65%) and mixed 2 (5.88%) using a sensitive and reliable polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) typing method on the actin gene. The phylogenetic diversity analysis showed that the genotype E samples fell within a separate clade compared to the other T. vaginalis isolates, while the samples of the genotype H separated into two clades.ConclusionsOur results demonstrate a notable gene polymorphism of clinical isolates from the targeted population and provide insight into the performance of these genetic markers in the molecular epidemiology of trichomoniasis. However, further studies are needed to clarify the association between a certain genotype and the pathogenicity of T. vaginalis.
Blastocystis sp. is one of the most common intestinal parasites in humans and many animals. To further understand the infection of Blastocystis hominis (B. hominis) and the distribution of its genotype in some areas of Henan Province, China, 793 stool samples from outpatients and inpatients in Xinxiang City and Xinyang City, Henan Province were collected from April 2020 to July 2022. The samples were detected by polymerase chain reaction and analyzed by univariate analysis and logistic regression analysis. The results showed that the infection rates of B. hominis in Xinxiang and Xinyang were 10.97% (51/465) and 10.98% (36/328), respectively. Although there were no significant differences in B. hominis infection between gender, age, residence, and disease background, the incidence of hematochezia significantly differed from the incidence of abdominal pain, diarrhea, and constipation among participants (χ2 = 15.795, p = 0.002). A total of 87 positive samples were sequenced and compared with Basic Local Alignment Search Tool, and five subtypes (ST1, ST3, ST4, ST6, and ST7) were identified, of which ST3 was the dominant subtype (63.22%, 55/87), followed by ST7 (17.24%, 15/87) and ST1 (16.09%, 14/87). This is the first study that analyzed the prevalence and subtype distribution of B. hominis in southern and northern Henan Province, thus providing new insights into the epidemiology of B. hominis.
Trichomoniasis is a common and curable sexually transmitted disease worldwide. The rapid, convenient, and accurate diagnosis of trichomoniasis is an important link in the prevention and treatment of the disease. The current detection methods of Trichomonas vaginalis are mainly wet mount microscopy, culture, nested PCR, and loop‐mediated isothermal amplification. However, these detection methods have some shortcomings. In this study, a recombinant enzyme polymerase amplification (RPA) assay had been conducted to detect T. vaginalis. The target gene and the corresponding primers were screened, and the reaction system and conditions were optimized in the assay of RPA. The sensitivity and specificity of this detection method were analyzed. The detection efficiency of wet mount microscopy, culture, nested PCR, and RPA was compared by testing 53 clinical samples from vaginal secretions. By screening, the actin gene of T. vaginalis could be used as a target gene for RPA detection of T. vaginalis, and the optimum reaction condition to amplify the actin gene by RPA was at 39°C for 30 min. The detection limit of T. vaginalis DNA using RPA was 1 pg, corresponding to a sensitivity of approximately five trophozoites. The RPA assay demonstrated high specificity for T. vaginalis, and there was no cross‐reactivity with Giardia lamblia, Escherichia coli, Lactobacillus, Toxoplasma gondii, Staphylococcus aureus, and Candida albicans. Of the 53 clinical samples, the positive rates of T. vaginalis detected by wet mount microscopy, culture, nested PCR and RPA were 50.9 4% (27/53), 71.7% (38/53), 71.7% (38/53), and 69.81% (37/53), respectively. Compared with culture which was used as the gold standard for diagnosing trichomoniasis, testing clinical samples by wet mount microscopy showed 71.05% sensitivity, 100% specificity, and moderate diagnostic agreement with the culture (K = 0.581, Z = 4.661, p < 0.001). The nested PCR showed 100% sensitivity, 100% specificity, and excellent diagnostic agreement (K = 1, Z = 7.28, p < 0.001), while RPA displayed 97.37% sensitivity, 100% specificity, and excellent diagnostic agreement (K = 0.954, Z = 6.956, p < 0.001). At the present study, rapid amplification of actin gene by RPA could be used as a tool for detection of T. vaginalis. The detection method of RPA was more sensitive than wet mount microscopy and displayed excellent specificity. Moreover, RPA amplification of actin gene did not require a PCR instrument and the amplification time was shorter than that of ordinary PCR. Therefore, the RPA assay was proposed in this study as a point‐of‐care examination and a diagnostic method of T. vaginalis infection, which exhibited the potential value in the treatment and prevention of trichomoniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.