A tissue-engineered ureteral scaffold was constructed with composited poly L-lactic acid (PLLA)-collagen endoluminal stent and uroepithelial cells (UECs) using a new seeding system. The electrospun PLLA-collagen nanofibrous mesh was seeded efficiently with human ureteral epithelial cells using a modified centrifugal seeding device. The cellular nanofibrous mesh was then wound around a spiral endoluminal stent to form a cellular composited PLLA-collagen ureteral scaffold. The cellular ureteral scaffold was subcutaneously implanted into nude mice. Cell attachment, distribution, and viability in vitro were investigated along with the cell fate in vivo. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that scaffolds seeded with centrifugal method had higher cellular activity than scaffolds seeded with static method (p < 0.05), and the metabolic activity per cell had no significant differences between the two methods (p > 0.05). Histologic analysis showed that the entrapped UECs remained in the scaffolds after 2 wk of implantation. The results of the study indicated that the composited PLLA-collagen endoluminal stent could serve as alternative cell carrier for tissue engineering ureter. In addition, the new modified centrifugal seeding system allowed rapid homogeneous distribution of cells onto the nanofibrous mesh, which will be useful to ureteral reconstruction.
Autologous urothelial cells (UCs) provide a cell source for urinary tissue engineering because they can be used safely due to their lack of immunogenicity. However, these cells cannot be harvested under the following circumstances: malignancy, infection and organ loss, etc. Human adipose-derived stem cells (HADSCs) possess the traits of high differentiation potential and ease of isolation, representing a promising resource for tissue engineering and regenerative medicine. Nevertheless, HADSCs have been poorly investigated in urology and the optimal approaches to induce HADSCs into urothelium are still under investigation. In this study, we hypothesized that the change of microenvironment by a conditioned medium was essential for the transdifferentiation of HADSCs into UCs. We then used a conditioned medium derived from urothelium to alternate the microenvironment of HADSCs. After 14 days of culture in a conditioned medium, about 25-50% HADSCs changed their morphology into polygonal epithelium-like shapes. In addition, these cells expressed up-regulating of urothelial lineage-specific markers (uroplakin 2and cytokeratin-18) and down-regulating of mesenchymal marker (vimentin) in RNA and protein level, respectively, which confirmed that HADSCs were induced into urothelial lineage cells. We also measured the growth factors in the conditioned medium in order to analyze the molecular mechanisms regulating transdifferentiation. We observed that the expression levels of PDGF-BB and VEGF were significantly higher than those of the control group after 14 days induction, suggesting they were abundantly secreted into the medium during the culturing period. In conclusion, HADSCs showed in vitro the upregulation of markers for differentiation towards urothelial cells by culturing in an urothelial-conditioned medium, which provides an alternative cell source for potential use in urinary tract tissue engineering.
Aim: To explore the feasibility and safety of greenlight photoselective vaporization of the prostate (PVP) on high-risk patients presenting with lower urinary tract symptoms suggestive of benign prostatic hyperplasia (BPH) and to evaluate their clinical and voiding outcome. Methods: A total of 85 high-risk patients with obstructive BPH underwent PVP with an 80 W potassium-titanyl-phosphate laser, which was delivered through a side-deflecting fiber with a 23 Fr continuous flow cystoscope. Operative time, blood loss, indwelling catheterzation, international prostate symptom score (IPSS), quality of life score (QoL), uroflowmetry, postvoid residual urine volume and short-term complication rates were evaluated for all patients. Results: All patients got through the perioperative period safely. The chief advantages of PVP were: short operative time (25.6 ± 7.6 min), little bleeding loss (56.8 ± 14.3 mL) and short indwelling catheterization (1.6 ± 0.8 d). The IPSS and QoL decreased from (29.6 ± 5.4) and (5.4 ± 0.6) to (9.5 ± 2.6) and (1.3 ± 0.6), respectively. The vast majority of patients were satisfied with voiding outcome. The mean maximal urinary flow rate increased to 17.8 mL/s and postvoid residual urine volume decreased to 55.6 mL. These results are significantly different from preoperative data (P < 0.05). No patient required blood transfusion or fluid absorption. There were few complications and very high patient satisfaction after operation. Conclusion: PVP has a short operative time and high tolerance, and is safe, effective and minimally invasive for high-risk patients, therefore it might be considered as a good alternative treatment for high-risk patients with obstructive urinary symptoms as a result of Keywords: benign prostatic hyperplasia; photoselective vaporization of the prostate; high-risk; laser surgery; prostate . Clinical Experience .
The study is aimed to evaluate the differentiation potential of human adipose-derived stem cells (hADSCs) into urothelial lineage, and to assess possibility of constructing ureteral grafts using the differentiated hADSCs and a novel polylactic acid (PLA)/collagen scaffolds. HADSCs were indirectly cocultured with urothelial cells in a transwell coculture system for urothelial differentiation. After 14 days coculturing, differentiation was evaluated by detecting urothelial lineage markers (cytokeratin-18 and uroplakin 2) in mRNA and protein level. Then the differentiated hADSCs were seeded onto PLA/collagen ureteral scaffolds and cultured in vitro for 1 week. The biocompatibility of the scaffolds was tested by scanning electron microscopy (SEM) and MTT analysis. At last, the cell/scafflod grafts were subcutaneously implanted into 4-week-old female athymic mice for 14 days. The results demonstrated that the hADSCs could be efficiently induced into urothelial lineage by indirect coculture. The differentiated cells seeded onto the PLA/collagen ureteral scaffolds survived up to 7 days and maintained proliferation in vitro, which indicated that the scaffolds displayed good biocompatibility. In vivo study showed that the differentiated cells in the grafts survived, formed multiple layers on the scaffolds and expressed urothelial lineage markers. In conclusion, hADSCs may serve as an alternative cell resource in cell-based tissue engineering for ureteral reconstruction. These cells could be employed to construct a model of ureteral engineering grafts and be effectively applied in vivo, which could be a new strategy on ureteral replacement with applicable potential in clinical research.
These authors contributed equally to the study the other side was debrided and sutured without stenting.• Both IVP and radioactive renography were performed 40, 80 and 120 days postoperatively. The operability and effectiveness of the biodegradable ureteral stent were studied thereafter. RESULTS• In Group A, hydronephrosis and hydroureter occurred and worsened postoperatively on the wounded sides in all nine beagles. The ratio of the renal partial concentration indices (RPCI) between the kidneys (unwounded side : wounded side) increased.• The ratio of the kidney washout half-time between the kidneys (unwounded side : wounded side) decreased. In Group B, neither hydronephrosis nor hydroureter was found postoperatively in the stented ureters but both occurred in the unstented ureters in all nine beagles.• The ratio of RPCI between kidneys (stented side : unstented side) increased whereas the kidney washout half-time ratio between the stented and unstented sides decreased. Differences were significant. CONCLUSION• In Group A, the new canine model for firearm fragment wounds was tested and proved to be operable and effective. In Group B, hydronephrosis and hydroureter were effectively prevented in ureters by biodegradable stent placement compared with the non-stented ureters where hydronephrosis and hydroureter occurred. The renal concentration capacity was effectively protected and the half-time of kidney washout was shortened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.