Lipid-based colloidal particles have been extensively studied as systemic gene delivery carriers. The topic that we would like to emphasize is the formulation/assembly of lipid-based nanoparticles (NP) with diameter under 100 nm for delivering nucleic acid in vivo. NP are different from cationic lipid-nucleic acid complexes (lipoplexes) and are vesicles composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The diameter of the NP is an important attribute to enable NP to overcome the various in vivo barriers for systemic gene delivery such as: the blood components, reticuloendothelial system (RES) uptake, tumor access, extracellular matrix components, and intracellular barriers. The major formulation factors that impact the diameter and encapsulation efficiency of DNA-containing NP include the lipid composition, nucleic acid to lipid ratio and formulation method. The particle assembly step is a critical one to make NP suitable for in vivo gene delivery. NP are often prepared using a dialysis method either from an aqueous-detergent or aqueous-organic solvent mixture. The resulting particles have diameters about 100 nm and nucleic acid encapsulation ratios are >80%. Additional components can then be added to the particle after it is formed. This ordered assembly strategy enables one to optimize the particle physico-chemical attributes to devise a biocompatible particle with increased gene transfer efficacy in vivo. The components included in the sequentially assembled NP include: poly(ethylene glycol) (PEG)-shielding to improve the particle pharmacokinetic behavior, a targeting ligand to facilitate the particle-cell recognition and in some case a bioresponsive lipid or pH-triggered polymer to enhance nucleic acid release and intracellular trafficking. A number of groups have observed that a PEG-shielded NP is a robust and modestly effective system for systemic gene or small interfering RNA (siRNA) delivery.
In an organic electroluminescent (EL) device, the recombination of injected holes and electrons produces what appears to be an ion‐pair or charge‐transfer (CT) exciton, and this CT exciton decays to produce one photon directly, or relaxes to a low‐lying local exciton (LE). Thus the full utilization of both the energy of the CT exciton and the LE should be a pathway for obtaining high‐efficiency EL. Here, a twisting donor‐acceptor (D‐A) triphenylamine‐imidazol molecule, TPA‐PPI, is reported: its synthesis, photophysics, and EL performance. Prepared by a manageable, one‐pot cyclizing reaction, TPA‐PPI exhibits deep‐blue emission with high quantum yields (90%) both in solution and in the solid state. Fluorescent solvatochromic experiments for TPA‐PPI solutions show a red‐shift of 57 nm (3032 cm−1) from low‐polarity hexane (406 nm) to high‐polarity acetonitrile (463 nm), accompanied by the gradual disappearance of the vibrational band in the spectra with increased solvent polarity. The photophysical investigation and DFT analysis suggest an intercrossed CT and LE excited state of the TPA‐PPI, originating from its twisting D‐A configuration. This is a rare instance that a CT‐state material shows highly efficient deep‐blue emission. EL characterization demonstrates that, as a deep‐blue emitter with CIE coordinates of (0.15, 0.11), the performance of a TPA‐PPI‐based device is rather excellent, displaying a maximum current efficiency of >5.0 cd A−1, and a maximum external quantum efficiency of >5.0%, corresponding to a maximum internal quantum efficiency of >25%. The effective utilization of the excitation energy arising from materials with intercrossed‐excited‐state (LE and CT) characters is thought to be beneficial for the improved efficiency of EL devices.
In principle, the ratio (Φ) of the maximum quantum efficiencies for electroluminescence (EL) to photoluminescence (PL) can be expected to approach unity, if the exciton (bound electron–hole pair) generated from the recombination of injected electrons and holes in OLEDs has a sufficiently weak binding energy. However, seldom are examples of Φ > 25% reported in OLEDs because of the strongly bound excitons for most organic semiconductors in nature. Here, a twisting donor–acceptor triphenylamine‐thiadiazol molecule (TPA‐NZP) exhibits fluorescent emission through a hybridized local and charge‐transfer excited state (HLCT), which is demonstrated from both fluorescent solvatochromic experiment and quantum chemical calculations. The HLCT state possesses two combined and compatible characteristics: a large transition moment from a local excited (LE) state and a weakly bound exciton from a charge transfer (CT) state. The former contributes to a high‐efficiency radiation of fluorescence, while the latter is responsible for the generation of a high fraction of singlet excitons. Using TPA‐NZP as the light‐emitting layer in an OLED, high Φ values of 93% (at low brightness) and 50% (at high brightness) are achieved, reflecting sufficient employment of the excitons in the OLED. Characterization of the EL device shows a saturated deep‐red emission with CIE coordinates of (0.67, 0.32), accompanied by a rather excellent performance with a maximum luminance of 4574 cd m−2 and a maximum external quantum efficiency (ηext) of ∼2.8%. The HLCT state is a new way to realize high‐efficiency of EL devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.