BackgroundBlended learning, defined as the combination of traditional face-to-face learning and asynchronous or synchronous e-learning, has grown rapidly and is now widely used in education. Concerns about the effectiveness of blended learning have led to an increasing number of studies on this topic. However, there has yet to be a quantitative synthesis evaluating the effectiveness of blended learning on knowledge acquisition in health professions.ObjectiveWe aimed to assess the effectiveness of blended learning for health professional learners compared with no intervention and with nonblended learning. We also aimed to explore factors that could explain differences in learning effects across study designs, participants, country socioeconomic status, intervention durations, randomization, and quality score for each of these questions.MethodsWe conducted a search of citations in Medline, CINAHL, Science Direct, Ovid Embase, Web of Science, CENTRAL, and ERIC through September 2014. Studies in any language that compared blended learning with no intervention or nonblended learning among health professional learners and assessed knowledge acquisition were included. Two reviewers independently evaluated study quality and abstracted information including characteristics of learners and intervention (study design, exercises, interactivity, peer discussion, and outcome assessment).ResultsWe identified 56 eligible articles. Heterogeneity across studies was large (I2 ≥93.3) in all analyses. For studies comparing knowledge gained from blended learning versus no intervention, the pooled effect size was 1.40 (95% CI 1.04-1.77; P<.001; n=20 interventions) with no significant publication bias, and exclusion of any single study did not change the overall result. For studies comparing blended learning with nonblended learning (pure e-learning or pure traditional face-to-face learning), the pooled effect size was 0.81 (95% CI 0.57-1.05; P<.001; n=56 interventions), and exclusion of any single study did not change the overall result. Although significant publication bias was found, the trim and fill method showed that the effect size changed to 0.26 (95% CI -0.01 to 0.54) after adjustment. In the subgroup analyses, pre-posttest study design, presence of exercises, and objective outcome assessment yielded larger effect sizes.ConclusionsBlended learning appears to have a consistent positive effect in comparison with no intervention, and to be more effective than or at least as effective as nonblended instruction for knowledge acquisition in health professions. Due to the large heterogeneity, the conclusion should be treated with caution.
Neuroinflammation is central to the pathology of traumatic brain injury (TBI). Xuefu Zhuyu decoction (XFZY) is an effective traditional Chinese medicine to treat TBI. To elucidate its potential molecular mechanism, this study aimed to demonstrate that XFZY functions as an anti-inflammatory agent by inhibiting the PI3K-AKT-mTOR pathway. Sprague-Dawley rats were exposed to controlled cortical impact to produce a neuroinflammatory response. The treatment groups received XFZY (9 g/kg and 18 g/kg), Vehicle group and Sham group were gavaged with equal volumes of saline. The modified neurologic severity score (mNSS) and the Morris water maze test were used to assess neurological deficits. Arachidonic acid (AA) levels in brain tissue were measured using tandem gas chromatography-mass spectrometry. TNF-α and IL-1β levels in injured ipsilateral brain tissue were detected by ELISA. AKT and mTOR expression were measured by western blot analysis. The results indicated that XFZY significantly enhanced spatial memory acquisition. XFZY (especially at a dose of 9 g/kg) markedly reduced the mNSS and levels of AA, TNF-α and IL-1β. Significant downregulation of AKT/mTOR/p70S6K proteins in brain tissues was observed after the administration of XFZY (especially at a dose of 9 g/kg). XFZY may be a promising therapeutic strategy for reducing inflammation in TBI.
Alzheimer’s disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ1-42-induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p-value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs.
Background: Huai Hua San (HHS), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in treating ulcerative colitis (UC). However, the interaction of bioactives from HHS with the targets involved in UC has not been elucidated yet. Aim: A network pharmacology-based approach combined with molecular docking and in vitro validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of HHS against UC. Materials and Methods: Bioactives and potential targets of HHS, as well as UC-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Lastly, in vitro experiments were conducted to further verify the findings. Results: A total of 28 bioactive ingredients of HHS and 421 HHS-UC-related targets were screened. Bioinformatics analysis revealed that quercetin, luteolin, and nobiletin may be potential candidate agents. JUN, TP53, and ESR1 could become potential therapeutic targets. PI3K-AKT signaling pathway might play an important role in HHS against UC. Moreover, molecular docking suggested that quercetin, luteolin, and nobiletin combined well with JUN, TP53, and ESR1, respectively. Cell experiments showed that the most important ingredient of HHS, quercetin, could inhibit the levels of inflammatory factors and phosphorylated c-Jun, as well as PI3K-Akt signaling pathway in LPS-induced RAW264.7 cells, which further confirmed the prediction by network pharmacology strategy and molecular docking. Conclusion:Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HHS against UC. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.