Facial expression recognition plays a key role in human-computer emotional interaction. However, human faces in real environments are affected by various unfavorable factors, which will result in the reduction of expression recognition accuracy. In this paper, we proposed a novel method which combines Fine-tuning Swin Transformer and Multiple Weights Optimality-seeking (FST-MWOS) to enhanced expression recognition performance. FST-MWOS mainly consists of two crucial components: Fine-tuning Swin Transformer (FST) and Multiple Weights Optimality-seeking (MWOS). FST takes Swin Transformer Large as the backbone network to obtain multiple groups of fine-tuned model weights for the homologous data domains by hyperparameters configurations, data augmentation methods, etc. In MWOS a greedy strategy was used to mine locally optimal generalizations in the optimal epoch interval of each group of fine-tuned model weights. Then, the optimality-seeking for multiple groups of locally optimal weights was utilized to obtain the global optimal solution. Experiments results on RAF-DB, FERPlus and AffectNet datasets show that the proposed FST-MWOS method outperforms various state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.