BackgroundsNeutrophil-lymphocyte ratio (NLR) has recently been reported as a predictor of Hepatocellular carcinoma (HCC). However, its prognostic value in HCC still remains controversial. In this study, we aimed to evaluate the association between NLR and clinical outcome of HCC patients by performing meta-analysis.MethodsA comprehensive literature search for relevant studies published up to August 2013 was performed by using PubMed, Ovid, the Cochrane Library and Web of Science databases. Meta-analysis was performed using hazard ratio (HR) or odds ratio (OR) and 95% confidence intervals (95% CIs) as effect measures.ResultsA total of 15 studies encompassing 3094 patients were included in this meta-analysis. Our pooled results showed that high NLR was associated with poor overall survival (OS) and disease free survival (DFS) in HCC initially treated by liver transplantation (HR = 3.42, 95% CI:2.41-4.85,P = 0.000; HR = 5.90, 95% CI:3.99-8.70,P = 0.000, respectively) and surgical resection (HR = 3.33, 95% CI:2.23-4.98, P = 0.000; HR = 2.10, 95% CI: 2.06–2.14, respectively). High NLR was also associated with poor OS in HCC treated by radiofrequency-ablation (HR = 1.28, 95%CI: 1.10-1.48, P = 0.000), TACE (HR = 2.52, 95% CI: 1.64-3.86, P = 0.000) and mixed treatment (HR = 1.85, 95% CI: 1.40-2.44, P = 0.000), respectively. In addition, high NLR was significantly correlated with the presence of vascular invasion (OR = 2.69, 95% CI: 2.01–3.59, P = 0.000), tumor multifocality (OR = 1.74, 95% CI: 1.30–2.34, P = 0.000) and higher incidence of AFP ≥ 400 ng/ml (OR = 1.46, 95% CI: 1.01–2.09, P = 0.04).ConclusionElevated NLR indicates a poor prognosis for patients with HCC. NLR may be a convenient, easily-obtained, low cost and reliable biomarker with prognostic potential for HCC.
BackgroundIt was unclear whether breast cancer subtypes are associated with the risk of site-specific metastases. This study aimed to evaluate the relationship between molecular subtypes and distant metastatic sites and their prognostic significance.MethodsWe identified 295,213 patients with invasive breast cancer from 2010 to 2014 using the Surveillance, Epidemiology and End Results database. Subtypes were classified into four categories: hormone receptor (HR+)/human epidermal growth factor receptor 2 (HER2−), HR+/HER2+, HR−/HER2+, and triple-negative (HR−/HER2−). Logistic regression was used to assess the association between metastasis location and subtypes. Multivariate Cox models were used to estimate the overall survival (OS) of related factors.ResultsAccording to our study, 3.28%, 1.52%, 1.20%, and 0.35% of newly diagnosed breast cancers presented bone, lung, liver, and brain metastases at diagnosis, respectively. Both metastatic sites and subtypes significantly affected the OS after metastasis. In multivariate analysis, HR+/HER2+ subtype (OR as compared with HR+/HER2− subtype, 1.30 [95% CI, 1.22–1.39]) significantly correlated with elevated bone metastasis risk, whereas HR−/HER2+ did not. Both HER2+ subtypes (HR+/HER2+ and HR−/HER2+) were significantly associated with higher rates of liver, brain, and lung metastases, while the highest OR was observed in liver metastases. Triple-negative tumors had a higher rate of brain (OR, 1.95 [95% CI, 1.61–2.35]), liver (OR, 1.35 [95% CI, 1.20–1.51]), and lung metastases (OR, 1.34 [95% CI, 1.21–1.47]), but a significantly lower rate of bone metastases (OR, 0.64 [95% CI, 0.59–0.69]) than HR+/HER2−tumors.ConclusionsBreast cancer subtypes are associated with different metastatic patterns and confer different prognostic impacts. Molecular subtypes can identify patients at increased risk of site-specific metastases.
The interaction between hypoxia and immune status has been confirmed in various cancer settings, and corresponding treatments have been investigated. However, reliable biomarkers are needed for individual treatment, so we sought to develop a novel scoring system based on hypoxia and immune status. Prognostic hypoxia-immune status-related signatures of patients with triple-negative breast cancer (TNBC) were identified in The Cancer Genome Atlas (TCGA) (N = 158), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (N = 297), and GSE58812 (N = 107). LASSO Cox regression was used for model construction. Hypoxia and immune status expression profiles were analyzed, and infiltrating immune cells were compared. Quantitative real-time PCR (qRT-PCR) was used for validation in the Sun Yat-sen University Cancer Center (SYSUCC) cohort, and immunofluorescence was applied for the detection of hypoxia and immune markers in cancer tissues. Ten cross-cohort prognostic hypoxia-immune signatures were included to construct the comprehensive index of hypoxia and immune (CIHI) in the METABRIC cohort. Two subgroups of patients with distinct hypoxia-immune status conditions were identified using CIHI: hypoxia high /immune low and hypoxia low /immune high , with a significantly better overall survival (OS) rate in the latter (P < 0.01). The prognostic value of CIHI was further validated in the TCGA, GSE58812, and SYSUCC cohorts (P < 0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.