Simultaneous Localization And Mapping (SLAM) is the problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. How to enable SLAM robustly and durably on mobile, or even IoT grade devices, is the main challenge faced by the industry today. The main problems we need to address are: 1.) how to accelerate the SLAM pipeline to meet real-time requirements; and 2.) how to reduce SLAM energy consumption to extend battery life. After delving into the problem, we found out that feature extraction is indeed the bottleneck of performance and energy consumption. Hence, in this paper, we design, implement, and evaluate a hardware ORB feature extractor and prove that our design is a great balance between performance and energy consumption compared with ARM Krait and Intel Core i5.
Aiming at distribution logistics planning in green manufacturing, heterogeneous-vehicle vehicle routing problems are identified for the first time with multiple time windows that meet load constraints, arrival time window constraints, material demand, etc. This problem is expressed by a mathematical model with the characteristics of the vehicle routing problem with split deliveries by order. A hybrid ant colony optimization algorithm based on tabu search is designed to solve the problem. The search time is reduced by a peripheral search strategy and an improved probability transfer rule. Parameter adaptive design is used to avoid premature convergence, and the local search is enhanced through a variety of neighborhood structures. Based on the problem that the time window cannot be violated, the time relaxation rule is designed to update the minimum wait time. The algorithm has the best performance that meets the constraints by comparing with other methods.
To schedule material supply intelligently and meet the production demand, studies concerning the material logistics planning problem are essential. In this paper, we consider the problem based on the scenario that more than one vehicle may visit each station in batches. The primary objective is to satisfy the demands in the time windows, followed by logistics planning with the minimum vehicles and travel time as the optimization objective. We construct a multi-objective mixed-integer programming model for the scenario of discrete material supply in workshops. First, we propose a hybrid heuristic algorithm combining NSGA-II and variable neighborhood search. This proposed algorithm combines the global search capability of NSGA-II and the strong local search capability, which can balance intensification and diversification well. Second, to maintain the diversity of population, we design the population diversity strategy and various neighborhood operators. We verify the effectiveness of the hybrid algorithm by comparing with other algorithms. To test the validity of the proposed problem, we have carried out research and application in a construction machinery enterprise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.