DNA hydroxymethylation and its mediated DNA demethylation are critical for multiple cellular processes, for example, nuclear reprogramming, embryonic development, and many diseases. Here, we demonstrate that a vital nutrient ascorbic acid (AA), or vitamin C (Vc), can directly enhance the catalytic activity of Tet dioxygenases for the oxidation of 5-methylcytosine (5mC). As evidenced by changes in intrinsic fluorescence and catalytic activity of Tet2 protein caused by AA and its oxidation-resistant derivatives, we further show that AA can uniquely interact with the C-terminal catalytic domain of Tet enzymes, which probably promotes their folding and/or recycling of the cofactor Fe 2+ . Other strong reducing chemicals do not have a similar effect. These results suggest that AA also acts as a cofactor of Tet enzymes. In mouse embryonic stem cells, AA significantly increases the levels of all 5mC oxidation products, particularly 5-formylcytosine and 5-carboxylcytosine (by more than an order of magnitude), leading to a global loss of 5mC (∼40%). In cells deleted of the Tet1 and Tet2 genes, AA alters neither 5mC oxidation nor the overall level of 5mC. The AA effects are however restored when Tet2 is re-expressed in the Tet-deficient cells. The enhancing effects of AA on 5mC oxidation and DNA demethylation are also observed in a mouse model deficient in AA synthesis. Our data establish a direct link among AA, Tet, and DNA methylation, thus revealing a role of AA in the regulation of DNA modifications. ■ INTRODUCTIONDNA demethylation remarkably contributes to the dynamics of the epigenetic marker 5-methylcytosine (5mC) in mammals and is critical for multiple biological processes, including animal cloning, 1 nuclear reprogramming, 2,3 development, 4−8 and highly locus-specific regulation of gene activities. 9−11 DNA demethylation can be initiated by the oxidation of 5mC and the formation of 5-hydroxymethylcytosine (5hmC), which are catalyzed by ten eleven translocation (Tet) family dioxygenases. 12−15 The formed 5hmC can be diluted by DNA replication, suggesting a passive DNA demethylation pathway. 16 Moreover, the 5hmC can be further oxidized by Tet proteins to form 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be excised by thymine DNA glycosylase (TDG) followed by the reintroduction of unmethylated cytosine through the base-excision repair (BER) pathway. 14,15 This important pathway for active DNA demethylation has been thought to be involved in a number of prominent biological processes. 5,6,10,11 Early and recent studies suggested that active and replication-independent DNA demethylation might be a rapid process. 10,11 The radically altered methylation, as observed in replication-independent demethylation of the paternal genome in zygotes, may complete within hours. 5,6,17−19 However, the observed levels of the active DNA demethylation intermediates, 5fC and 5caC in the cultured cells, were 100-fold less than the primary product 5hmC. 13−15,20−22 Biochemically, the Tet-mediated DNA dem...
Idiopathic pulmonary fibrosis (IPF) is a prototype of lethal, chronic, progressive interstitial lung disease of unknown etiology. Over the past decade, macrophage has been recognized to play a significant role in IPF pathogenesis. Depending on the local microenvironments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) phenotypes. In general, M1 macrophages are responsible for wound healing after alveolar epithelial injury, while M2 macrophages are designated to resolve wound healing processes or terminate inflammatory responses in the lung. IPF is a pathological consequence resulted from altered wound healing in response to persistent lung injury. In this review, we intend to summarize the current state of knowledge regarding the process of macrophage polarization and its mediators in the pathogenesis of pulmonary fibrosis. Our goal is to update the understanding of the mechanisms underlying the initiation and progression of IPF, and by which, we expect to provide help for developing effective therapeutic strategies in clinical settings.
Elevations of circulating Fibroblast growth factor 23 (FGF23) are associated with adverse cardiovascular outcomes and progression of renal failure in chronic kidney disease (CKD). Efforts to identify gene products whose transcription is directly regulated by FGF23 stimulation of fibroblast growth factor receptors (FGFR)/α-Klotho complexes in the kidney is confounded by both systemic alterations in calcium, phosphorus and vitamin D metabolism and intrinsic alterations caused by the underlying renal pathology in CKD. To identify FGF23 responsive genes in the kidney that might explain the association between FGF23 and adverse outcomes in CKD, we performed comparative genome wide analysis of gene expression profiles in the kidney of the Collagen 4 alpha 3 null mice (Col4a3−/−) model of progressive kidney disease with kidney expression profiles of Hypophosphatemic (Hyp) and FGF23 transgenic mouse models of elevated FGF23. The different complement of potentially confounding factors in these models allowed us to identify genes that are directly targeted by FGF23. This analysis found that α-Klotho, an anti-aging hormone and FGF23 co-receptor, was decreased by FGF23. We also identified additional FGF23-responsive transcripts and activation of networks associated with renal damage and chronic inflammation, including lipocalin 2 (Lcn2), transforming growth factor beta (TGF-β) and tumor necrosis factor-alpha (TNF-α) signaling pathways. Finally, we found that FGF23 suppresses angiotensin-converting enzyme 2 (ACE2) expression in the kidney, thereby providing a pathway for FGF23 regulation of the renin-angiotensin system. These gene products provide a possible mechanistic links between elevated FGF23 and pathways responsible for renal failure progression and cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.