Abstract-Recently, both industry and academia have proposed many different roadmaps for the future of DRAM. Consequently, there is a growing need for an extensible DRAM simulator, which can be easily modified to judge the merits of today's DRAM standards as well as those of tomorrow. In this paper, we present Ramulator, a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility. Unlike existing simulators, Ramulator is based on a generalized template for modeling a DRAM system, which is only later infused with the specific details of a DRAM standard. Thanks to such a decoupled and modular design, Ramulator is able to provide out-of-the-box support for a wide array of DRAM standards: DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, as well as some academic proposals (SALP, AL-DRAM, TL-DRAM, RowClone, and SARP). Importantly, Ramulator does not sacrifice simulation speed to gain extensibility: according to our evaluations, Ramulator is 2.5× faster than the next fastest simulator. Ramulator is released under the permissive BSD license.
The secure information flow problem, which checks whether low-security outputs of a program are influenced by high-security inputs, has many applications in verifying security properties in programs. In this paper we present lazy self-composition, an approach for verifying secure information flow. It is based on self-composition, where two copies of a program are created on which a safety property is checked. However, rather than an eager duplication of the given program, it uses duplication lazily to reduce the cost of verification. This lazy self-composition is guided by an interplay between symbolic taint analysis on an abstract (single copy) model and safety verification on a refined (two copy) model. We propose two verification methods based on lazy self-composition. The first is a CEGAR-style procedure, where the abstract model associated with taint analysis is refined, on demand, by using a model generated by lazy self-composition. The second is a method based on bounded model checking, where taint queries are generated dynamically during program unrolling to guide lazy self-composition and to conclude an adequate bound for correctness. We have implemented these methods on top of the SeaHorn verification platform and our evaluations show the effectiveness of lazy self-composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.