Amaranthus species are widely cultivated as dietary crops and are promising sources of phytochemical compounds with antioxidant properties. To explore Amaranthus as a potential medical resource, 289 accessions (nine species) were cultivated, and their agricultural characteristics, total phenolic content (TPC), rutin contents, and antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)] were studied. Wide variations in agricultural traits, phytochemical contents, and antioxidant activities were observed between the accessions and across species. The effects of agricultural traits were evaluated, and the results indicated that yellow-flowered amaranth genotypes could be important because of their high values of TPC, rutin contents, DPPH, and ABTS. In addition, leaf length, days until 50% flowering, days until 50% heading and days until maturity, showed positive correlations with TPC, rutin contents, DPPH, and ABTS. The whole dataset was subjected to principal component analysis, and distinctive aggregation was observed across the Amaranthus species. In total, 289 accessions were clustered into three groups, and seven genotypes were determined as being good medical resources due to their high phytochemical content and antioxidant activities. Our findings provide important information for the development of new varieties with high phytochemical contents and high levels of antioxidant activity.
Peanut, an important oilseed crop cultivated worldwide as a dietary food, is a good food source with health benefits. To explore the potential benefits of peanuts as a food resource, 301 peanut accessions were evaluated to determine the effect of seed weight and genotype on total oil content and fatty acid composition. Total oil was extracted using the Soxhlet method and fatty acids were analyzed by gas chromatography mass spectrometry. Wide variations in the 100-seed weight, total oil content, and fatty acid profile were observed among genotypes and accession types. An effect of seed weight on the fatty acid composition of peanut seeds was observed. Increases in the oleic acid content and decreases in the linoleic acid content occurred in association with increases in the 100-seed weight. Moreover, the 100-seed weight, total oil content, and individual and total fatty acid contents, except arachidic acid, differed significantly (p < 0.001 or 0.05) among the accession types of landrace, cultivar, breeding line, and unknown. The discovery of this high diversity could contribute to further studies of peanut domestication and evolutionary classification. Our findings are important for the selection of peanut seeds with health benefits and development of new varieties of peanut with health benefits.
Safflower is an important oilseed crop cultivated primarily for its seeds, which have pharmaceutical properties. Color is an important agronomical trait that appears to be a prior parameter for evaluating the internal quality of plant seeds. This study employs 197 safflower accessions seeds to analyze how their seed coat and flower colors affect their total oil content, fatty acid composition, total phenolic content (TPC), N-(p-coumaroyl)serotonin (CS) and N-feruloylserotonin (FS) contents, and [2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)] radical scavenging activities. Significant variations were observed in the targeted metabolite contents and antioxidant properties among genotypes. Notably, the linoleic acid content, total unsaturated fatty acid content, the ratio of total unsaturated fatty acid to total saturated fatty acid, CS, FS, ABTS, and DPPH scavenging capacities varied significantly based on seed coat color, with white-seeded genotypes having the highest average values of these parameters. Moreover, the linoleic acid content differed significantly (p < 0.05) among the genotypes with varying flower colors, with white-flowered accessions having the highest average content. Furthermore, genotypes K185105 (No. 75) and K175278 (No. 146) were identified as promising genetic resources with health benefits. Overall, these findings reveal that seed coat and flower colors distinctly affect metabolite contents and antioxidant properties in safflower seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.