Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and multiresistance against antibiotics. This bacterium produces and secretes various toxins with hydrolytic activities including phospholipases A, C and D. However, the function of intracellular phospholipases for bacterial virulence has still not been established. Here we demonstrate that the hypothetical gene pa2927 of P. aeruginosa encodes a novel phospholipase B named PaPlaB. PaPlaB isolated from detergent-solubilized membranes of E. coli rapidly degraded various GPLs including endogenous GPLs isolated from P. aeruginosa cells. Cellular localization studies suggest that PaPlaB is peripherally bound to the inner and outer membrane of E. coli, yet the active form was predominantly associated with the cytoplasmic membrane. In vitro activity of purified and detergent-stabilized PaPlaB increases at lower protein concentrations. The size distribution profile of PaPlaB oligomers revealed that decreasing protein concentration triggers oligomer dissociation. These results indicate that homooligomerisation regulates PaPlaB activity by a yet unknown mechanism, which might be required for preventing bacteria from self-disrupting the membrane. We demonstrated that PaPlaB is an important determinant of the biofilm lifestyle of P. aeruginosa, as shown by biofilm quantification assay and confocal laser scanning microscopic analysis of biofilm architecture. This novel intracellular phospholipase B with a putative virulence role contributes to our understanding of membrane GPL degrading enzymes and may provide a target for new therapeutics against P. aeruginosa biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.