Friction stir welding (FSW) can achieve a sound welding joint, but its residual stress and distortion cannot be avoided due to the non-uniformity of temperature distribution during welding. Stationary shoulder friction stir welding (SSFSW) was employed to butt weld 6005A-T6 aluminum alloy plates. The effects of welding speeds ranging from 200 mm/min to 600 mm/min on residual stress and distortion were investigated in detail. A thermo-mechanical model was utilized to compare the residual stress distribution between conventional FSW and SSFSW. SSFSW was beneficial to decreasing the peak temperature of stir zone (SZ) and then obtaining a narrower SZ. The peak residual stress produced by SSFSW was 50% lower than that by conventional FSW and a narrower tensile stress region was attained by SSFSW. Moreover, the stationary shoulder applied a function of synchronous rolling during the welding, which controlled the distortion effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.