This paper introduces a fuel-switching price to the Alberta market, which is designed for encouraging power plant companies to switch from coal to natural gas when they produce electricity; this has been successfully applied to the European market. Moreover, we consider an energy-switching price which considers power switch from natural gas to wind. We modeled these two prices using five mean reverting processes including a Regime-switching processes, Lévy-driven Ornstein–Uhlenbeck process and Inhomogeneous Geometric Brownian Motion, and estimate them based on multiple procedures such as Maximum likelihood estimation and Expectation-Maximization algorithm. Finally, this paper proves previous results applied to the Albertan Market where the jump modeling technique is needed when modeling fuel-switching data. In addition, it not only gives promising conclusions on the necessity of introducing Regime-switching models to the fuel-switching data, but also shows that the Regime-switching model is better fitted to the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.