Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates1, including more recently the genomes of archaic hominins2,3. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for ~1% of autism cases4,5 and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. We reconstructed the evolutionary history of the locus and identified BOLA2 (bolA family member 2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95 kbp segment containing BOLA2 duplicated across the critical region ~282 thousand years ago (kya), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carry one or more copies of the duplication, which nearly fixed early in the human lineage—a pattern unlikely to have arisen so rapidly in the absence of selection (p < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11.2 rearrangement showed that >96% of breakpoints occur within the Homo sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the Homo sapiens lineage ~282 kya simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.
A novel mechanism of DNA endonucleolytic cleavage has been visualized for the homing endonuclease I-PpoI by trapping the uncleaved enzyme-substrate complex and comparing it to the previously visualized product complex. This enzyme employs a unique single metal mechanism. A magnesium ion is coordinated by an asparagine residue and two DNA oxygen atoms and stabilizes the phosphoanion transition state and the 3'oxygen leaving group. A hydrolytic water molecule is activated by a histidine residue for an in-line attack on the scissile phosphate. A strained enzyme-substrate-metal complex is formed before cleavage, then relaxed during the reaction.
Significance Bloom syndrome is a rare human genetic disease characterized by proportional dwarfism, immunodeficiency, and an elevated risk of many different cancer types. We used RNA expression profiling to identify networks of mRNAs and microRNAs that are differentially expressed in cells from Bloom syndrome patients and associated with cell proliferation, survival, and molecular pathways promoting cancer. Altered mRNA expression was in some cases strongly correlated with the presence of G4 motifs, which may form G-quadruplex targets that are bound by BLM. Further analysis of the genetic networks we identified may elucidate mechanisms responsible for Bloom syndrome disease pathogenesis and ways to ameliorate or prevent disease in affected individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.