Wi-Fi-based human activity recognition has attracted broad attention for its advantages, which include being device-free, privacy-protected, unaffected by light, etc. Owing to the development of artificial intelligence techniques, existing methods have made great improvements in sensing accuracy. However, the performance of multi-location recognition is still a challenging issue. According to the principle of wireless sensing, wireless signals that characterize activity are also seriously affected by location variations. Existing solutions depend on adequate data samples at different locations, which are labor-intensive. To solve the above concerns, we present an amplitude- and phase-enhanced deep complex network (AP-DCN)-based multi-location human activity recognition method, which can fully utilize the amplitude and phase information simultaneously so as to mine more abundant information from limited data samples. Furthermore, considering the unbalanced sample number at different locations, we propose a perception method based on the deep complex network-transfer learning (DCN-TL) structure, which effectively realizes knowledge sharing among various locations. To fully evaluate the performance of the proposed method, comprehensive experiments have been carried out with a dataset collected in an office environment with 24 locations and five activities. The experimental results illustrate that the approaches can achieve 96.85% and 94.02% recognition accuracy, respectively.
In the 6G aerial network, all aerial communication nodes have computing and storage functions and can perform real-time wireless signal processing and resource management. In order to make full use of the computing resources of aerial nodes, this paper studies the mobile edge computing (MEC) system based on aerial base stations (AeBSs), proposes the joint optimization problem of computation the offloading and deployment control of AeBSs for the goals of the lowest task processing delay and energy consumption, and designs a deployment and computation offloading scheme based on federated deep reinforcement learning. Specifically, each low-altitude AeBS agent simultaneously trains two neural networks to handle the generation of the deployment and offloading strategies, respectively, and a high-altitude global node aggregates the local model parameters uploaded by each low-altitude platform. The agents can be trained offline and updated quickly online according to changes in the environment and can quickly generate the optimal deployment and offloading strategies. The simulation results show that our method can achieve good performance in a very short time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.