Short-term photovoltaic power forecasting is of great significance for improving the operation of power systems and increasing the penetration of photovoltaic power. To improve the accuracy of short-term photovoltaic power forecasting, an ensemble-model-based short-term photovoltaic power prediction method is proposed. Firstly, the quartile method is used to process raw data, and the Pearson coefficient method is utilized to assess multiple features affecting the short-term photovoltaic power output. Secondly, the structure of the ensemble model is constructed, and a k-fold cross-validation method is used to train the submodels. The prediction results of each submodel are merged. Finally, the validity of the proposed approach is verified using an actual data set from State Power Investment Corporation Limited. The simulation results show that the quartile method can find outliers which contributes to processing the raw data and improving the accuracy of the model. The k-fold cross-validation method can effectively improve the generalization ability of the model, and the ensemble model can achieve higher prediction accuracy than a single model.
Combined cooling, heating, and power (CCHP) systems is a distributed energy system that uses the power station or heat engine to generate electricity and useful heat simultaneously. Due to its wide range of advantages including efficiency, ecological, and financial, the CCHP will be the main direction of the integrated system. The accurate prediction of heating, gas, and electrical loads plays an essential role in energy management in CCHP systems. This paper combined long short-term memory (LSTM) network and convolutional neural network (CNN) to design a novel hybrid neural network for short-term loads forecasting considering their correlation. Pearson correlation coefficient will be utilized to measure the temporal correlation between current load and historical loads, and analyze the coupling between heating, gas and electrical loads. The dropout technique is proposed to solve the over-fitting of the network due to the lack of data diversity and network parameter redundancy. The case study shows that considering the coupling between heating, gas and electrical loads can effectively improve the forecasting accuracy, the performance of the proposed approach is better than that of the traditional methods.
Image fusion has been developing into an important area of research. In remote sensing, the use of the same image sensor in different working modes, or different image sensors, can provide reinforcing or complementary information. Therefore, it is highly valuable to fuse outputs from multiple sensors (or the same sensor in different working modes) to improve the overall performance of the remote images, which are very useful for human visual perception and image processing task. Accordingly, in this paper, we first provide a comprehensive survey of the state of the art of multi-sensor image fusion methods in terms of three aspects: pixel-level fusion, feature-level fusion and decision-level fusion. An overview of existing fusion strategies is then introduced, after which the existing fusion quality measures are summarized. Finally, this review analyzes the development trends in fusion algorithms that may attract researchers to further explore the research in this field.
To solve the problem of high accuracy initial alignment of strap-down inertial navigation system (SINS) for ballistic missile, an on-line identification method of initial alignment error based on adaptive particle swarm optimization (PSO) is proposed. Firstly, a complete navigation model of SINS is established to provide the accurate model basis for subsequent numerical optimization calculation. Then setting the initial alignment error as the optimization parameter and regarding the minimum deviation between SINS and GPS output as the objective function, the error parameter optimization model is designed. At the same time, the mutation idea of genetic algorithm (GA) is introduced into the PSO; thus the adaptive PSO is adopted to identify the initial alignment error on-line. The simulation results show that it is feasible to solve the initial alignment error identification problem of SINS by intelligent optimization algorithm. Compared with the standard PSO algorithm and the GA, the adaptive PSO algorithm has the fastest convergence speed and the highest convergence precision, and the initial pitch error and the initial yaw error precision are within 10′′ and the initial azimuth error precision is within 25′′. The navigation accuracy of SINS is improved effectively. Finally, the feasibility of the adaptive PSO algorithm to identify the initial alignment error is further validated based on the test data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.