BackgroundDNA methylation is an important epigenetic modification involved in many biological processes. Bisulfite treatment coupled with high-throughput sequencing provides an effective approach for studying genome-wide DNA methylation at base resolution. Libraries such as whole genome bisulfite sequencing (WGBS) and reduced represented bisulfite sequencing (RRBS) are widely used for generating DNA methylomes, demanding efficient and versatile tools for aligning bisulfite sequencing data.ResultsWe have developed BS-Seeker2, an updated version of BS Seeker, as a full pipeline for mapping bisulfite sequencing data and generating DNA methylomes. BS-Seeker2 improves mappability over existing aligners by using local alignment. It can also map reads from RRBS library by building special indexes with improved efficiency and accuracy. Moreover, BS-Seeker2 provides additional function for filtering out reads with incomplete bisulfite conversion, which is useful in minimizing the overestimation of DNA methylation levels. We also defined CGmap and ATCGmap file formats for full representations of DNA methylomes, as part of the outputs of BS-Seeker2 pipeline together with BAM and WIG files.ConclusionsOur evaluations on the performance show that BS-Seeker2 works efficiently and accurately for both WGBS data and RRBS data. BS-Seeker2 is freely available at http://pellegrini.mcdb.ucla.edu/BS_Seeker2/ and the Galaxy server.
PI3K/AKT and RAS/MAPK pathway co-activation in the prostate epithelium promotes both epithelial-mesenchymal transition (EMT) and metastatic castration-resistant prostate cancer (mCRPC), which is currently incurable. To study the dynamic regulation of the EMT process, we developed novel genetically-defined cellular and in vivo model systems from which epithelial, EMT, and mesenchymal-like tumor cells with Pten deletion and Kras activation can be isolated. When cultured individually, each population has the capacity to regenerate all three tumor cell populations, indicative of epithelial-mesenchymal plasticity. Despite harboring the same genetic alterations, mesenchymal-like tumor cells are resistant to PI3K and MAPK pathway inhibitors, suggesting that epigenetic mechanisms may regulate the EMT process, as well as dictate the heterogeneous responses of cancer cells to therapy. Among differentially expressed epigenetic regulators, the chromatin remodeling protein HMGA2 is significantly upregulated in EMT and mesenchymal-like tumors cells, as well as in human mCRPC. Knockdown of HMGA2, or suppressing HMGA2 expression with the histone deacetylase (HDAC) inhibitor LBH589, inhibits epithelial-mesenchymal plasticity and stemness activities in vitro and dramatically reduces tumor growth and metastasis in vivo through successful targeting of EMT and mesenchymal-like tumor cells. Importantly, LBH589 treatment in combination with castration prevents mCRPC development and significantly prolongs survival following castration by enhancing p53 and AR acetylation and in turn sensitizing castration-resistant mesenchymal-like tumor cells to ADT. Taken together, these findings demonstrate that cellular plasticity is regulated epigenetically, and that mesenchymal-like tumor cell populations in mCRPC that are resistant to conventional and targeted therapies can be effectively treated with the epigenetic inhibitor LBH589.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.