Activated pancreatic stellate cells (PSCs) are the main effector cells in the process of fibrosis, a major pathological feature in pancreatic diseases that including chronic pancreatitis and pancreatic cancer. During tumorigenesis, quiescent PSCs change into an active myofibroblast-like phenotype which could create a favorable tumor microenvironment and facilitate cancer progression by increasing proliferation, invasiveness and inducing treatment resistance of pancreatic cancer cells. Many cellular signals are revealed contributing to the activation of PSCs, such as transforming growth factor-β, platelet derived growth factor, mitogen-activated protein kinase (MAPK), Smads, nuclear factor-κB (NF-κB) pathways and so on. Therefore, investigating the role of these factors and signaling pathways in PSCs activation will promote the development of PSCs-specific therapeutic strategies that may provide novel options for pancreatic cancer therapy. In this review, we systematically summarize the current knowledge about PSCs activation-associated stimulating factors and signaling pathways and hope to provide new strategies for the treatment of pancreatic diseases.
Abstract. The sonic hedgehog (SHH) signaling pathway plays a critical role in embryonic development, tissue regeneration and organogenesis. The activation of SHH signaling produces profibrogenic effects in various tissues, such as the liver and the biliary ducts. However, the role of SHH signaling in renal fibrogenesis remains to be elucidated. For this purpose, in the present study, we evaluated the hypothesis that activated SHH signaling promotes the acquisition of a myofibroblastic phenotype through the epithelial-mesenchymal transition (EMT), resulting in renal interstitial fibrosis (RIF). Kidney samples from rats subjected to unilateral or bilateral ureteral obstruction exhibited the enhanced expression of SHH-pathway proteins, mesenchymal markers and the decreased expression of epithelial markers. Overactive SHH signaling as well as tubular EMT and RIF in the obstructed kidneys were inhibited by recanalization of the ureter. In vitro, SHH signaling was activated during EMT induction and extracellular matrix (ECM) deposition was observed in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells [RTECs; NRK-52E cell line]. Exogenous SHH activated SHH signaling and resulted in the upregulated expression of mesenchymal genes, the profibrogenic cytokine TGF-β1, and the downregulated expression of epithelial markers. The blockade of SHH signaling with cyclopamine abolished SHH-mediated EMT as well as the acquisition of a myofibroblastic phenotype, and decreased TGF-β1 expression and ECM production. Thus, taken together, these findings demonstrate that the activation of the SHH signaling pathway promotes the induction of EMT and renal tubulointerstitial fibrosis. The pharmacological inhibition of SHH signaling may potentially be of therapeutic value in the management of fibrotic kidney diseases.
Cannabidiol (CBD), a phytochemical derived from Cannabis sativa L., has been demonstrated to exhibit promising anti-tumor properties in multiple cancer types. However, the effects of CBD on hepatocellular carcinoma (HCC) cells remain unknown. We have shown that CBD effectively suppresses HCC cell growth in vivo and in vitro, and induced HCC cell pyroptosis in a caspase-3/GSDME-dependent manner. We further demonstrated that accumulation of integrative stress response (ISR) and mitochondrial stress may contribute to the initiation of pyroptotic signaling by CBD. Simultaneously, CBD can repress aerobic glycolysis through modulation of the ATF4–IGFBP1–Akt axis, due to the depletion of ATP and crucial intermediate metabolites. Collectively, these observations indicate that CBD could be considered as a potential compound for HCC therapy.
This meta-analysis suggests that the PPARG C161T polymorphism marginally contributes to increased susceptibility to CHD and marginally increased association between PPARG H477H polymorphism and CHD also appeared in Asian and hospital-based controls. But PPARG P12A polymorphism is not associated with CHD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.