Toxoplasma gondii (T. gondii) is an obligate intracellular parasitic protozoan that can cause toxoplasmosis in humans and other endotherms. T. gondii can manipulate the host gene expression profile by interfering with miRNA expression, which is closely associated with the molecular mechanisms of T. gondii-induced brain injury. However, it is unclear how T. gondii manipulates the gene expression of central nervous system (CNS) cells through modulation of miRNA expression in vivo during acute and chronic infection. Therefore, high-throughput sequencing was used to investigate expression profiles of brain miRNAs at 10, 25, and 50 days post-infection (DPI) in pigs infected with the Chinese I genotype T. gondii strain in this study. Compared with the control group 87, 68, and 135 differentially expressed miRNAs (DEMs) were identified in the infected porcine brains at 10, 25, and 50 DPI, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that a large number significantly enriched GO terms and KEGG pathways were found, and were mostly associated with stimulus or immune response, signal transduction, cell death or apoptosis, metabolic processes, immune system or diseases, and cancers. miRNA–gene network analysis revealed that the crucial connecting nodes, including DEMs and their target genes, might have key roles in the interactions between porcine brain and T. gondii. These results suggest that the regulatory strategies of T. gondii are involved in the modulation of a variety of host cell signaling pathways and cellular processes, containing unfolded protein response (UPR), oxidative stress (OS), autophagy, apoptosis, tumorigenesis, and inflammatory responses, by interfering with the global miRNA expression profile of CNS cells, allowing parasites to persist in the host CNS cells and contribute to pathological damage of porcine brain. To our knowledge, this is the first report on miRNA expression profile in porcine brains during acute and chronic T. gondii infection in vivo. Our results provide new insights into the mechanisms underlying T. gondii-induced brain injury during different infection stages and novel targets for developing therapeutic agents against T. gondii.
Background Fasciola hepatica is an important zoonotic parasite that causes fasciolosis in a broad range of animals. No information is available about the prevalence of F. hepatica in Père David’s deer (Elaphurus davidianus), an endangered species in the world. Therefore, the purpose of the study was to evaluate the prevalence of fasciolosis in Père David’s deer in the Dafeng Elk National Natural Reserve, Jiangsu province, China. Results In this study, 142 fecal samples from Père David’s deer were analyzed for F. hepatica by microscopy and nest-PCR. Only one sample was positive for F. hepatica according to microscopy examination, while 18 of 142 (12.68, 95%CI: 2.841–22.45%) samples were positive for F. hepatica according to nest-PCR results. Conclusions This is the first report of prevalence of F. hepatica in Père David’s deer. The prevalence data indicated that F. hepatica was also present in this endangered animal, which may cause a potential threat to this precious species.
Background Eimeria coccidiosis is a significant intestinal parasitic disease, which can lead to weight loss, disease and even death of many animals. At present, there is no information about the prevalence of Eimeria among the world’s endangered species of Père David’s deer (Elaphurus davidianus). Therefore, the purpose of this study is to identify an unknown Eimeria genus in the Père David’s deer in Dafeng Milu National Nature Reserve, China. Results A new Eimeria species is described from Père David’s deer. Sporulated oocysts (n = 54) are pyriform, with a rough, yellowish brown, 2-layered oocyst wall (2.5 μm thick). A numerous small granules are dispersed randomly on the wall. Oocysts measured 41.2 (39.2–42.8) μm × 29.5 (27.9–30.5) μm, oocyst length/width (L/W) ratio, 1.4. Oocyst residuum, a polar granule and a polar cap are absent. The micropyle (3.5 μm wide) is present. Sporocysts are spindle shaped, 18.2 (16.5–20.0) μm × 10.5 (9.8–11.9) μm, sporocyst L/W ratio, 1.7 (1.5–1.9). A thin convex Stieda body is present and the sporocyst residuum is composed of numerous small granules less than 2.0 μm in diameter dispersed randomly. Each sporocyst contained 2 comma-shaped sporozoites in head-to-tail arrangement. A nucleus is located immediately anterior to the posterior, strong refractive and subspherical refractile body (~ 8 μm). Molecular analysis was conducted at the 18S, ITS-1 and COI loci. Conclusion Based on the morphological and molecular data, this isolate is a new species of coccidian parasite, which is named Eimeria davidianusi after its host, the Père David’s deer (Elaphurus davidianus).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.