Formation of many dsDNA viruses begins with the assembly of a procapsid, containing scaffolding proteins and a multisubunit portal but lacking DNA, which matures into an infectious virion. This process, conserved among dsDNA viruses such as herpes viruses and bacteriophages, is key to forming infectious virions. Bacteriophage P22 has served as a model system for this study in the past several decades. However, how capsid assembly is initiated, where and how scaffolding proteins bind to coat proteins in the procapsid, and the conformational changes upon capsid maturation still remain elusive. Here, we report Cα backbone models for the P22 procapsid and infectious virion derived from electron cryomicroscopy density maps determined at 3.8-and 4.0-Å resolution, respectively, and the first procapsid structure at subnanometer resolution without imposing symmetry. The procapsid structures show the scaffolding protein interacting electrostatically with the N terminus (N arm) of the coat protein through its C-terminal helix-loop-helix motif, as well as unexpected interactions between 10 scaffolding proteins and the 12-fold portal located at a unique vertex. These suggest a critical role for the scaffolding proteins both in initiating the capsid assembly at the portal vertex and propagating its growth on a T ¼ 7 icosahedral lattice. Comparison of the procapsid and the virion backbone models reveals coordinated and complex conformational changes. These structural observations allow us to propose a more detailed molecular mechanism for the scaffolding-mediated capsid assembly initiation including portal incorporation, release of scaffolding proteins upon DNA packaging, and maturation into infectious virions.sDNA viruses infecting both prokaryotes and eukaryotes share a common assembly pathway proceeding from a precursor (procapsid) to an infectious virion (1-4). In addition to the coat proteins, the procapsid requires scaffolding proteins, absent from the virion, for proper assembly, and a portal for DNA packaging and subsequent DNA ejection. However, despite a half-century of research on icosahedral viruses, it remains unclear how initially identical subunits adopt both hexameric and pentameric conformations in the virus and select the correct locations needed to form closed shells of the proper size (5). Packaging of DNA through the portal is accompanied by the exit of scaffolding proteins from the procapsid and conformational changes in the coat proteins as the capsid matures (2, 6).Understanding the molecular mechanisms of dsDNA virus assembly and maturation requires knowledge of the interactions among the coat, scaffolding, and portal proteins, all of which are essential for these processes. X-ray crystallography (7-9) and electron cryomicroscopy (cryo-EM) (10-12) have yielded nearatomic to atomic resolution models of several dsDNA icosahedral viruses and provided a structural framework of interactions among their coat proteins. However, the structural details of procapsid portal incorporation, scaffolding protein bind...
Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.
Summary Encased within the 280 kb genome in the capsid of the giant myovirus φKZ is an unusual cylindrical proteinaceous ‘inner body’ of highly ordered structure. We present here mass spectrometry, bioinformatic and biochemical studies that reveal novel information about the φKZ head and the complex inner body. The identification of 39 cleavage sites in 19 φKZ head proteins indicates cleavage of many prohead proteins forms a major morphogenetic step in φKZ head maturation. The φKZ head protease, gp175, is newly identified here by a bioinformatics approach, as confirmed by a protein expression assay. Gp175 is distantly related to T4 gp21 and recognizes and cleaves head precursors at related but distinct S/A/G‐X‐E recognition sites. Within the φKZ head there are six high‐copy‐number proteins that are probable major components of the inner body. The molecular weights of five of these proteins are reduced 35–65% by cleavages making their mature form similar (26–31 kDa), while their precursors are dissimilar (36–88 kDa). Together the six abundant proteins sum to the estimated mass of the inner body (15–20 MDa). The identification of these proteins is important for future studies on the composition and function of the inner body.
Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.bacteriophage T7 maturation | DNA packaging intermediates | noncovalent topological linking | procapsid | single-particle cryo-EM M any dsDNA viruses, including tailed phages and herpes viruses, initially assemble a DNA-free procapsid with assistance of a network of scaffold proteins. Accompanying the exit of scaffolding proteins during subsequent ATP-driven DNA packaging, the icosahedral shell of the procapsid undergoes dramatic conformational changes and matures into a typically larger and more angular shell of the infectious phage (1-6). However, structural details, including those of capsid intermediates, are limited to the phage HK97 system (5, 7-9), for which recombinantly produced procapsid and nonphysiological conversion products were analyzed.The packaging of the 39.937-kbp DNA genome of the shorttail Escherichia coli bacteriophage, T7, is a model for understanding basic principles common to dsDNA tailed phages and herpes viruses. The T7 system is also of interest because it has been used for popular biotechnologies, such as recombinant protein expression (10) and protein display on the capsid surface (11). The T7 capsid contains 415 copies of the major shell protein gp10 (12) that form a T = 7L icosahedral lattice. From lowresolution cryo-EM 3D reconstructions the tertiary topology of gp10 can be divided into four regions: N-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.