So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.
This is the second paper in a series on a new luminous z ∼ 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z ∼ 5. Combined our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z ∼ 5 quasar sample to date, with 99 quasars in the range 4.7 ≤ z < 5.4 and −29 < M 1450 ≤ −26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as α = −2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope β = −3.58 ± 0.24 and a fainter break magnitude M * 1450 = −26.98 ± 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution (LEDE) model. Using the best fit QLF, the contribution of quasars to the ionizing background at z ∼ 5 is found to be 18% − 45% with a clumping factor C of 2 − 5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.
We present Chandra observations of 2106 radio-quiet quasars in the redshift range 1.7 ≤ z ≤ 2.7 from the Sloan Digital Sky Survey (SDSS), through data release fourteen (DR14), that do not contain broad absorption lines (BAL) in their rest-frame UV spectra. This sample adds over a decade worth of SDSS and Chandra observations to our previously published sample of 139 quasars from SDSS DR5 which is still used to correlate X-ray and optical/UV emission in typical quasars. We fit the SDSS spectra for 753 of the quasars in our sample that have high-quality (exposure time ≥ 10 ks and off-axis observation angle ≤ 10 ) X-ray observations, and analyze their X-ray-to-optical SED properties ( α ox and ∆α ox ) with respect to the measured CIV and MgII emission-line rest-frame equivalent width (EW) and the CIV emission-line blueshift. We find significant correlations (at the ≥ 99.99% level) between α ox and these emission-line parameters, as well as between ∆α ox and C iv EW. Slight correlations are found between ∆α ox and C iv blueshift, Mg ii EW, and the C iv EW to Mg ii EW ratio. The best-fit trend in each parameter space is used to compare the X-ray weakness ( ∆α ox ) and optical/UV emission properties of typical quasars and weak-line quasars (WLQs). The WLQs typically exhibit weaker X-ray emission than predicted by the typical quasar relationships. The best-fit relationships for our typical quasars are consistent with predictions from the disk-wind quasar model. The behavior of the WLQs compared to our typical quasars can be explained by an X-ray "shielding" model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.