So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.
We present the discovery of nine quasars at z ∼ 6 identified in the Sloan Digital Sky Survey (SDSS) imaging data. This completes our survey of z ∼ 6 quasars in the SDSS footprint. Our final sample consists of 52 quasars at 5.7 < z ≤ 6.4, including 29 quasars with z AB ≤ 20 mag selected from 11,240 deg 2 of the SDSS single-epoch imaging survey (the main survey), 10 quasars with 20 ≤ z AB ≤ 20.5 selected from 4223 deg 2 of the SDSS overlap regions (regions with two or more imaging scans), and 13 quasars down to z AB ≈ 22 mag from the 277 deg 2 in Stripe 82. They span a wide luminosity range of −29.0 ≤ M 1450 ≤ −24.5. This well-defined sample is used to derive the quasar luminosity function (QLF) at z ∼ 6. After combining our SDSS sample with two faint (M 1450 ≥ −23 mag) quasars from the literature, we obtain the parameters for a double power-law fit to the QLF. The bright-end slope β of the QLF is well constrained to be β = −2.8 ± 0.2. Due to the small number of low-luminosity quasars, the faint-end slope α and the characteristic magnitude M * 1450 are less well constrained, with α = −1.90The spatial density of luminous quasars, parametrized as ρ(M 1450 < −26, z) = ρ(z = 6) 10 k(z−6) , drops rapidly from z ∼ 5 to 6, with k = −0.72 ± 0.11. Based on our fitted QLF and assuming an IGM clumping factor of C = 3, we find that the observed quasar population cannot provide enough photons to ionize the z ∼ 6 IGM at ∼ 90% confidence. Quasars may still provide a significant fraction of the required photons, although much larger samples of faint quasars are needed for more stringent constraints on the quasar contribution to reionization.
The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 < z < 0.58, which doubles the number of such objects known to date. These new CL AGNs were discovered by several ways, from (1) repeat spectra in the SDSS, (2) repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and (3) photometric variability and new spectroscopic observations. We use the photometric data from surveys, including the SDSS imaging survey, the Pan-STARRS1, the DESI Legacy imaging survey, the Wide-field Infrared Survey Explorer (WISE), the Catalina Real-time Transient Survey, and the Palomar Transient Factory. The estimated upper limits of transition timescale of the CL AGNs in this sample spans from 0.9 to 13 years in the rest frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0.2 mag in W 1 band were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at more than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared WISE colors W 1 − W 2 become redder when the objects become brighter in the W 1 band, possibly due to a stronger hot dust contribution in the W 2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.