A reinforcement learning-based continuous action space path planning method for mobile robots is proposed in this article. First, the kinematic model of the mobile robot is analyzed, and on this basis, the optimal state space is constructed according to the minimum depth of the field value in the depth image to characterize the distance between the robot and the obstacle. Then, by setting the reward function of the mobile robot based on the artificial potential field method, the information of the robot’s distance from obstacles is continuous, and a new reinforcement learning training process is proposed. Finally, by introducing a DDPG algorithm, the path planning of a mobile robot in an unknown environment is described as a Markov decision process, and the optimal planning of the mobile robot’s continuous action space path is realized with a high success rate. The results show that compared with other three comparison methods, the final success rates of the proposed method are the highest, which are 97.2%, 99.1%, 98.4%, and 98.6%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.