Excitotoxicity, a form of neuronal injury in which excessive activation of glutamate receptors results in cellular calcium overload, has been implicated in the pathogenesis of Alzheimer disease (AD), although direct evidence is lacking. Mutations in the presenilin-1 (PS1) gene on chromosome 14 are causally linked to many cases of early-onset inherited AD (refs. 5,6). We generated PS1 mutant mice (PS1M146VKI) that express the PS1 M146V targeted allele at normal physiological levels. Although PS1M146VKI mice have no overt mutant phenotype, they are hypersensitive to seizure-induced synaptic degeneration and necrotic neuronal death in the hippocampus. Cultured hippocampal neurons from PS1M146VKI mice have increased vulnerability to death induced by glutamate, which is correlated with perturbed calcium homeostasis, increased oxidative stress and mitochondrial dysfunction. Agents that suppress calcium influx or release and antioxidants protect neurons against the excitotoxic action of the PS1 mutation. These findings establish a direct link between a genetic defect that causes AD and excitotoxic neuronal degeneration, and indicate new avenues for therapeutic intervention in AD patients.
Background
Circular RNAs are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. In the current study, we evaluate the function of a novel circRNA derived from the β-catenin gene locus, circβ-catenin.
Results
Circβ-catenin is predominantly localized in the cytoplasm and displays resistance to RNase-R treatment. We find that circβ-catenin is highly expressed in liver cancer tissues when compared to adjacent normal tissues. Silencing of circβ-catenin significantly suppresses malignant phenotypes in vitro and in vivo, and knockdown of this circRNA reduces the protein level of β-catenin without affecting its mRNA level. We show that circβ-catenin affects a wide spectrum of Wnt pathway-related genes, and furthermore, circβ-catenin produces a novel 370-amino acid β-catenin isoform that uses the start codon as the linear β-catenin mRNA transcript and translation is terminated at a new stop codon created by circularization. We find that this novel isoform can stabilize full-length β-catenin by antagonizing GSK3β-induced β-catenin phosphorylation and degradation, leading to activation of the Wnt pathway.
Conclusions
Our findings illustrate a non-canonical function of circRNA in modulating liver cancer cell growth through the Wnt pathway, which can provide novel mechanistic insights into the underlying mechanisms of hepatocellular carcinoma.
Electronic supplementary material
The online version of this article (10.1186/s13059-019-1685-4) contains supplementary material, which is available to authorized users.
The transcription factor NF-kappaB is expressed in neurons wherein it is activated in response to a variety of stress- and injury-related stimuli including exposure to cytokines such as tumor necrosis factor-alpha (TNFalpha), and excitotoxic and oxidative insults. NF-kappaB may play a role in the anti-death actions of TNFalpha in cultured hippocampal neurons exposed to metabolic and oxidative insults. We now report that pretreatment of hippocampal cell cultures with agents that activate NF-kappaB (TNFalpha and C2-ceramide) confers resistance of neurons to apoptosis induced by the oxidative insults FeSO4 and amyloid beta-peptide (Abeta25-35). The neuroprotective actions of TNFalpha and ceramide were abolished in cultures cotreated with kappaB decoy DNA demonstrating a requirement for NF-kappaB activation for prevention of cell death. Levels of manganese superoxide dismutase (Mn-SOD) in neurons were increased following exposure of cultures to TNFalpha and ceramide in control cultures, but not in cultures cotreated with kappaB decoy DNA. FeSO4 and Abeta25-35 induced accumulation of mitochondrial peroxynitrite, and membrane lipid peroxidation, in neurons. Peroxynitrite accumulation and lipid peroxidation were largely prevented in neurons pretreated with TNFalpha and ceramide prior to exposure to FeSO4 and Abeta25-35, an effect blocked by kappaB decoy DNA. Immunoreactivity of neurons with an anti-nitrotyrosine antibody was increased following exposure to FeSO4 and Abeta25-35; TNFalpha and C2-ceramide suppressed protein tyrosine nitration, and kappaB decoy DNA blocked the effects of TNFalpha and C2-ceramide. Finally, the peroxynitrite scavenger uric acid protected neurons against apoptosis induced by FeSO4 and Abeta, and suppressed peroxynitrite accumulation. We conclude that, by inducing production of Mn-SOD and suppressing peroxynitrite formation and membrane lipid peroxidation, NF-kappaB plays an anti-apoptotic role in neurodegenerative conditions that involve oxidative stress. The data further suggest important roles for peroxynitrite and NF-kappaB in the pathogenesis of neuronal degeneration in Alzheimer's disease.
Prostate apoptosis response-4 (Par-4) is a protein containing both a leucine zipper and a death domain that was isolated by differential screening for genes upregulated in prostate cancer cells undergoing apoptosis. Par-4 is expressed in the nervous system, where its function is unknown. In Alzheimer disease (AD), neurons may die by apoptosis, and amyloid beta-protein (A beta) may play a role in this. We report here that Par-4 expression is increased in vulnerable neurons in AD brain and is induced in cultured neurons undergoing apoptosis. Blockade of Par-4 expression or function prevented neuronal apoptosis induced by Ab and trophic factor withdrawal. Par-4 expression was enhanced, and mitochondrial dysfunction and apoptosis exacerbated, in cells expressing presenilin-1 mutations associated with early-onset inherited AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.