This paper aims to take general tensors as inputs for supervised learning. A supervised tensor learning (STL) framework is established for convex optimization based learning techniques such as support vector machines (SVM) and minimax probability machines (MPM). Within the STL framework, many conventional learning machines can be generalized to take n th -order tensors as inputs. We also study the applications of tensors to learning machine design and feature extraction by linear discriminant analysis (LDA). Our method for tensor based feature extraction is named the tenor rank-one discriminant analysis (TR1DA). These generalized algorithms have several advantages: 1) reduce the curse of dimension problem in machine learning and data mining; 2) avoid the failure to converge; and 3) achieve better separation between the different categories of samples. As an example, we generalize MPM to its STL version, which is named the tensor MPM (TMPM). TMPM learns a series of tensor projections iteratively. It is then evaluated against the original MPM. Our experiments on a binary classification problem show that TMPM significantly outperforms the original MPM.
Many scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of the two use case implementations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) implementing dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10 4 ) tasks; and (iv) task-level fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.