In this article, the distributed optimization problem is studied for a class of fractional-order nonlinear uncertain multi-agent systems (MASs) with unmeasured states. Each agent is represented through a system with unknown nonlinearities, unmeasurable states and a local objective function described by a quadratic polynomial function. A penalty function is constructed by a sum of local objective functions and integrating consensus conditions of the MASs. Radial basis function Neural-networks (RBFNNs) and Neural networks (NN) state observer are applied to approximate the unknown nonlinear dynamics and estimate unmeasured states, respectively. By combining the NN state observer and the penalty function, and the stability theory of the Lyapunov function, the distributed observer-based adaptive optimized backstepping dynamic surface control protocol is proposed to ensure the outputs of all agents asymptotically reach consensus to the optimal solution of the global objective function. Simulations demonstrate the effectiveness of the proposed control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.