PurposeIn online user innovation communities (UICs), firms adopt external innovations beyond their internal resources and capabilities. However, little is known about the influences of organizational adoption or detailed adoption patterns on subsequent user innovation. This study aims to examine the influence of organizational adoption, including its level and timing, on users' subsequent innovation behavior and performance.Design/methodology/approachThis research model was validated using a secondary dataset of 17,661 user–innovation pairs from an online UIC. The effect of organizational adoption on users' subsequent innovation likelihood was measured by conducting a panel logistic regression. Furthermore, the effects of organizational adoption on subsequent innovation’ quality and homogeneity and those of the adoption level and timing on subsequent innovation likelihood were tested using Heckman's two-step approach.FindingsThe authors found that organizational adoption negatively affects the likelihood of subsequent innovation and its homogeneity but positively affects its quality. Moreover, more timely and lower-level adoption can increase the likelihood of users' subsequent innovation.Originality/valueThis study comprehensively explores organizational adoption's effects on users' subsequent innovation behavior and performance, contributing to the literature on UICs and user innovation adoption. It also provides valuable practical implications for firms on how to optimize their adoption decisions to maintain the quantity, quality, and diversity of user innovations.
The arrival of the era of artificial intelligence has promoted the development of smart libraries and endowed them with new features such as autonomy, autonomous learning, context perception, and multi-function. Analyzing how these new features affect users’ behavior is of great significance to the application of artificial intelligence and the optimization of services. Based on the TTF model, the four dimensions of product intelligence (autonomy, adaptability, reactivity, and multifunctionality) are introduced to represent the technology characteristics, and the research model is constructed. And the method of SEM is used to conduct empirical analysis. The results show that technology characteristics and individual characteristics are the main factors affecting the task-technology fit (TTF), while the effect of task characteristics on TTF is not significant. Among them, the impact of technology characteristics is greater than the individual characteristics. The relative importance of the four dimensions of technology characteristics is “Autonomy >Multifunctionality, Reactivity> Adaptability”. The TTF significantly positively affects users’ intention to use smart libraries. Therefore, the suggestions on optimizing smart services are put forward.
PurposeAlgorithms are widely used to manage various activities in the gig economy. Online car-hailing platforms, such as Uber and Lyft, are exemplary embodiments of such algorithmic management, where drivers are managed by algorithms for task allocation, work monitoring and performance evaluation. Despite employing substantially, the platforms face the challenge of maintaining and fostering drivers' work engagement. Thus, this study aims to examine how the algorithmic management of online car-hailing platforms affects drivers' work engagement.Design/methodology/approachDrawing on the transactional theory of stress, the authors examined the effects of algorithmic monitoring and fairness on online car-hailing drivers' work engagement and revealed the mediation effects of challenge-hindrance appraisals. Based on survey data collected from 364 drivers, the authors' hypotheses were examined using partial least squares structural equation modeling (PLS-SEM). The authors also applied path comparison analyses to further compare the effects of algorithmic monitoring and fairness on the two types of appraisals.FindingsThis study finds that online car-hailing drivers' challenge-hindrance appraisals mediate the relationship between algorithmic management characteristics and work engagement. Algorithmic monitoring positively affects both challenge and hindrance appraisals in online car-hailing drivers. However, algorithmic fairness promotes challenge appraisal and reduces hindrance appraisal. Consequently, challenge and hindrance appraisals lead to higher and lower work engagement, respectively. Further, the additional path comparison analysis showed that the hindering effect of algorithmic monitoring exceeds its challenging effect, and the challenge-promoting effect of algorithmic fairness is greater than the algorithm's hindrance-reducing effect.Originality/valueThis paper reveals the underlying mechanisms concerning how algorithmic monitoring and fairness affect online car-hailing drivers' work engagement and fills the gap in the research on algorithmic management in the context of online car-hailing platforms. The authors' findings also provide practical guidance for online car-hailing platforms on how to improve the platforms' algorithmic management systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.