Pseudomonas aeruginosa is an opportunistic pathogen that causes serious acute or chronic infections in humans. Acute infections typically involve the type III secretion systems (T3SSs) and bacterial motility, whereas chronic infections are often associated with biofilm formation and the type VI secretion system. To identify new genes required for pathogenesis, a transposon mutagenesis library was constructed and the gene PA4857, named tspR, was found to modulate T3SS gene expression. Deletion of P. aeruginosa tspR reduced the virulence in a mouse acute lung infection model and diminished cytotoxicity. Suppression of T3SS gene expression in the tspR mutant resulted from compromised translation of the T3SS master regulator ExsA. TspR negatively regulated two small RNAs, RsmY and RsmZ, which control RsmA. Our data demonstrated that defects in T3SS expression and biofilm formation in retS mutant could be partially restored by overexpression of tspR. Taken together, our results demonstrated that the newly identified retS-tspR pathway is coordinated with the retS-gacS system, which regulates the genes associated with acute and chronic infections and controls the lifestyle choice of P. aeruginosa.
SummaryPseudomonas aeruginosa causes serious acute and chronic infections in humans. Major differences exist in disease pathogenesis, clinical treatment and outcomes between acute and chronic infections. P. aeruginosa acute infection characteristically involves the type III secretion systems (T3SS) while chronic infection is often associated with the formation of biofilms, a major cause of difficulties to eradicate chronic infections. The choice between acute and chronic infection or the switch between them by P. aeruginosa is controlled by regulatory pathways that control major virulence factors and genes associated with biofilm formation. In this study, we characterized a hybrid sensor kinase PA1611 that controls the expression of genes associated with acute and chronic infections in P. aeruginosa PAO1. Expression of PA1611 completely repressed T3SS and swarming motility while it promoted biofilm formation. The protein PA1611 regulates two small RNAs (sRNAs), rsmY and rsmZ which in turn control RsmA. Independent of phosphate relay, PA1611 interacts directly with RetS in vivo. The positive effect of RetS on factors associated with acute infection could presumably be restrained by PA1611 when chronic infection conditions are present. This RetS-PA1611 interaction, together with the known RetS-GacS interaction, may control disease progression and the lifestyle choice of P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.