A high-resolution protein atlas is essential for understanding the molecular basis of biological processes.Using protein-fusion reporters and imaging-based single-cell analyses, we present a protein expression atlas of C. elegans embryogenesis encompassing 266 transcription factors (TFs) in nearly all (90%) lineage-resolved cells. Single-cell analysis reveals a combinatorial code and cascade that elucidate the regulatory hierarchy between a large number of lineage-, tissue-, and time-specific TFs in spatiotemporal fate patterning. Guided by expression, we identify essential functions of CEH-43/DLX, a lineage-specific TF, and ELT-1/GATA3, a well-known skin fate specifier, in neuronal specification; and M03D4.4 as a pan-muscle TF in converging muscle differentiation in the body wall and pharynx. Finally, systems-level analysis of TF regulatory state uncovers lineage-and time-specific kinetics of fate progression and widespread detours of the trajectories of cell differentiation. Collectively, our work reveals a single-cell molecular atlas and general principles underlying the spatiotemporal patterning of a metazoan embryo.
Axillary meristems play an important role in determining final plant architecture and floral structures. Tomato Ls, Arabidopsis LAS and rice MOC1 are orthologous genes regulating axillary meristem initiation and outgrowth. Their functions are generally conserved but the functional specificities are divergent among species. Obvious differences between rice panicles and wheat spikes suggest the divergent functions of MOC1 and its wheat ortholog. We show that TaMOC1 might be involved in wheat spikelet development. TaMOC1 is a typical nucleus localized protein with transcriptional activation abilities. The variable N-termini of TaMOC1 protein is necessary for transcriptional activation. TaMOC1 is highly expressed in ears with length of 2, 3 and 6 cm. Significant associations between the TaMOC1-7A haplotype and spikelet number per spike were observed in ten environments over 3 years and 2 sites. TaMOC1-7A HapH, a favored haplotype acquired during wheat polyploidization, may make a positive contribution to spikelet number per spike. Based on evolutionary analysis, geographic distribution and frequency changes, TaMOC1-7A HapH might be associated with wheat domestication and Chinese wheat breeding history. The pyramiding favorable alleles of TaMOC1-7A HapH and TaSnRK2.10 (C, associated with higher TGW) can improve both spikelet number per spike and TGW simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.