Bilayer form factors obtained from x-ray scattering data taken with high instrumental resolution are reported for multilamellar vesicles of L alpha phase lipid bilayers of dipalmitoylphosphatidylcholine at 50 degrees C under varying osmotic pressure. Artifacts in the magnitudes of the form factors due to liquid crystalline fluctuations have been eliminated by using modified Caillé theory. The Caillé fluctuation parameter eta 1 increases systematically with increasing lamellar D spacing and this explains why some higher order peaks are unobservable for the larger D spacings. The corrected form factors fall on one smooth continuous transform F(q); this shows that the bilayer does not change shape as D decreases from 67.2 A (fully hydrated) to 60.9 A. The distance between headgroup peaks is obtained from Fourier reconstruction of samples with four orders of diffraction and from electron density models that use 38 independent form factors. By combining these results with previous gel phase results, area AF per lipid molecule and other structural quantities are obtained for the fluid L alpha phase. Comparison with results that we derived from previous neutron diffraction data is excellent, and we conclude from diffraction studies that AF = 62.9 +/- 1.3 A2, which is in excellent agreement with a previous estimate from NMR data.
Low temperature is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of chilling stress responses in rice (Oryza sativa L. cv. Nipponbare), we carried out a comparative proteomic analysis. Three-week-old rice seedlings were treated at 6°C for 6 or 24 h and then recovered for 24 h. Chilling treatment resulted in stress phenotypes of rolling leaves, increased relative electrolyte leakage, and decreased net photosynthetic rate. The temporal changes of total proteins in rice leaves were examined using two-dimensional electrophoresis. Among ϳ1,000 protein spots reproducibly detected on each gel, 31 protein spots were downregulated, and 65 were up-regulated at least at one time point. Mass spectrometry analysis allowed the identification of 85 differentially expressed proteins, including well known and novel cold-responsive proteins. Several proteins showed enhanced degradation during chilling stress, especially the photosynthetic proteins such as Rubisco large subunit of which 19 fragments were detected. The identified proteins are involved in several processes, i.e. Among various abiotic stresses, low temperature (chilling and freezing temperature) is a major stress that limits the productivity and the geographical distribution of many important crops such as rice and maize. Chilling temperatures that range from 0 to 12°C are common during the growing season in temperate regions and can substantially decrease plant productivity (1). To defend against the stress, plants use several strategies, one of which is regulation of gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.